
Using SWRL for Rule-Driven Applications

Ian MacLarty1, Ludovic Langevine2, Michel Vanden Bossche2, and Peter Ross1

1 {iml,pro}@missioncriticalit.com
Mission Critical Australia Pty Ltd

22 Blackwood Street, North Melbourne, VIC 3051, Australia
2 {llg,mvb}@missioncriticalit.com

Mission Critical SA
Boulevard de France, 9, Bât. A, 1420 Braine-l’Alleud, Belgium

Abstract. We relate our experiences using SWRL for commercial rule-
based applications, and present a demo telco application where we used
OWL to model the domain and SWRL to model the rules. We argue
that using a formal, declarative rules language that operates over a for-
mal and declarative model has distinct advantages over production rule
systems that incorporate side-effects such as RIF-PRD, ILOG JRules or
JESS. We also describe a simple, but effective implementation of our
rules engine using the logic programming language Mercury and bench-
mark its performance. The rules engine is part of our ODASE platform
for developing ontology-driven business-critical applications.

1 Introduction

When developing business software there is often a gap between what the busi-
ness experts want and what IT thinks they want. Projects are often incompletely
and informally specified and subject to frequent requirement changes. This leads
to a “business-IT gap”. This gap makes it difficult for IT to give reasonable time
and cost estimates for the project. This problem is compounded as requirements
inevitably change over time.

In our experience the business-IT gap can be bridged by describing the busi-
ness knowledge in a formal language that is both understandable by the business
experts and consumable by computer programs.

The Web Ontology Language, OWL [2], was developed to facilitate greater
machine interpretability of human knowledge by providing additional vocabulary
along with formal semantics. We use OWL to model the business domain and
form a “knowledge continuum” between business and IT, providing a mechanism
by which the business can drive the evolution of the project by proposing concrete
changes to the ontology.

The Semantic Web Rule Language, SWRL [1], is a rule language designed
to integrate closely with OWL. It supports adding Horn clauses whose atoms
are OWL classes and properties. SWRL increases the expressivity of OWL and
makes it possible to model more domain knowledge than OWL alone. We use
SWRL to model parts of the business domain that are not easily or naturally
modelled with OWL. The SWRL rules can be used in a production rule style
where they are used to compute outputs, or they can be used for validation.
SWRL builtins also provide a very natural extension mechanism whereby the
modelling language can be enhanced with domain-specific builtins. For example



in a bio-tech system we built, we modeled some chemical properties of genomics
macro-molecules (such as DNA strain) in OWL. We then added special builtins
for computing the melting temperature or the molecular weight of such bio-
chemical compounds based on those properties.

In this paper we present our experiences using OWL and SWRL as the
basis for rule-driven applications. We have written a simple proof-of-concept
application, based on a real-world model in the telecommunications domain, that
demonstrates some of the advantages of our approach. The demo is accessible
online at http://cloud.missioncriticalit.com/rule-demo.

In addition to the above demo we have also developed a number of commercial
systems using the same technology: a property and casualty e-Insurance system,
an online financial planning and life insurance sales tool, an advanced sales
process management tool and a web ordering system for the bio-tech industry.
We have also developed a railway traffic management system which, although
fully ontology-driven, is capable of supporting real-time events.

The rest of the paper consists of the following sections. In Sect. 2 we give
an overview of our ODASE platform and our general approach to software en-
gineering. In Sect. 3 we give an overview of the demo application. In Sect. 4
we discuss one of our SWRL engine implementations. In Sect. 5 we discuss the
benefits of using SWRL as a rule language. In Sect. 7 we give some benchmarks
showing that our SWRL engine is practical. Section 8 concludes.

2 The ODASE Platform

The demo application was build using our ODASE platform (Ontology Driven
Architecture for Software Engineering) [7], [8].

In ODASE we use OWL and SWRL to model the business domain and
Linear Temporal Logic to model business processes. Domain experts work with
knowledge engineers to define the business model, rules and processes. Software
engineers build generic interpreters that consume the model, rules and process
specification to create a working application. Custom application-specific code
(for example Java code in the UI) interfaces with the model through generated,
domain-specific, type-safe APIs. This ensures that if the model changes, the
custom code no longer compiles, forcing the code to be kept in sync with the
model.

The generic parts of the ODASE platform are written in Mercury [5]. Using
a logic language reduces the “impedance mismatch” between the modelling lan-
guage and the programming language. Another reason for using Mercury is its
strong type and mode systems which make it easier to engineer complex systems
that are also robust and efficient. For example we are able to use Mercury’s type
and mode system to guarantee that new domain-specific SWRL builtins do not
have side-effects. Mercury can be compiled to C or Java. This makes it easy to
integrate ODASE with Java applications.

3 The Demo Application

The application shows the options available to a user who wishes to purchase a
broadband internet/TV package, based on relevant information about the user.
An annotated screenshot of the demo is shown in Fig. 1.

2

http://cloud.missioncriticalit.com/rule-demo


Highlighted
invalid field

derived from
SWRL rule

Error message
from SWRL
rule label

Available
input options 

and labels
derived from
OWL model

Output computed
from SWRL rules
and OWL model

SWRL debugger
link

Fig. 1. Annotated demo screenshot

The screen is divided into two halves. The first half of the screen contains
questions about the user which are used to determine what options are available,
while the second half displays the currently available options. The input section
is modelled as a CustomerContext class in the ontology. The CustomerContext
captures technical details of the customer’s installation that may have an impact
on the offered product configurations (e.g. localization and technological support
available in the area). The CustomerContext includes information like what sort
of package (bundle) the user is interested in, where the user lives (region), what
technology the user already has installed and what technology is possible for that
user. In the full application some of the CustomerContext would be populated
with values from the telco’s backend systems, rather than via the UI.

The available options are derived from rules in the model.
The OWL model contains 79 classes, 86 properties and 156 instance. There

are 21 SWRL rules. It is not a very large ontology, but there are some complicated
relationships in the model (Pellet 2.0.0 takes 11 minutes to classify it on a 2 GHz
Core 2 Duo machine).

The model captures the business domain of a telco company. This includes
marketing aspects such as which services and options are offered to the customer
and how they are packaged into products. The model also includes technical
constraints that link the services, the installation and the hardware.

For example the Offer class models all the products a customer can purchase
through the application. Among them, the Bundle offers aggregate several of-
fers into a single one. The Feature class represents all the elementary services
that may be seen by the customer. This class admits several subclasses such

3



as InternetCustomerFacingService (the various internet accesses and options)
or Installation (the set of all the installation methods which can be proposed
to activate an offer). The provides property links an offer to the features it in-
cludes. The following rule states that all the features provided by an offer are
also provided by the bundles that aggregate this offer:

Bundle(?b) ∧ aggregates(?b, ?o) ∧ provides(?o, ?f) → provides(?b, ?f)

The demo runs as a Java servlet. We compile the Mercury code to Java so
that it can run in the same Java Virtual Machine (JVM) as the servlet.

The user interface is written with Apache Wicket, a Model-View-Controller
orientated Java web framework. We have a tool that generates a bean-like
domain-specific Java API for the OWL model. For example it generates a Java
class called Offer with a method called getProvides that returns a list of ob-
jects of the class Feature. The generated getProvides method calls the ODASE
SWRL/OWL engine which is implemented in Mercury. This makes it possible
to integrate the OWL model with the Wicket frontend (or any other Java appli-
cation) in a type-safe way.

4 The Rules Engine

In ODASE we have several rules engines designed for different tasks. The engines
all implement a common interface so that they can be easily interchanged and
stacked on top of each other. The engines can access various kinds of data sources,
including SQL databases or a in-memory stores.

For the demo application we use an in-memory store. The SWRL engine uses
backward-chaining with minimal model tabling. The algorithm is a modified
version of OLDT resolution [6]. Note that the engine interprets the SWRL rules
directly and does not require translation of the SWRL rules to Mercury code.

An important benefit of using backward-chaining is that we only query the
underlying facts store (which could be a large SQL database) for facts that are
relevant to answering the query at hand and we don’t need to know what facts
will be required beforehand and put them into working memory. Contrast this
with a rules engine such as JESS which uses the RETE algorithm and requires
working memory be populated with all relevant facts before executing the rules.

We reason about OWL axioms by translating the OWL axioms into SWRL
rules and interpreting them with the SWRL engine. For example we translate
the OWL axiom TransitiveProperty p into the SWRL rule:

p(?a, ?b) ∧ p(?b, ?c) → p(?a, ?c)

Note that if we used normal SLD resolution instead of OLDT resolution such
rules would cause infinite loops.

It is well known that not all OWL axioms can be fully translated into SWRL
rules. This means that the resulting SWRL program can be incomplete with
respect to the OWL semantics of the model. Generally we have not found this
to be a problem in practice. In our experience the business model can usually
be translated to SWRL without loss of completeness.

4



5 Benefits of Using SWRL

SWRL is a declarative rules language not bound to a particular execution algo-
rithm. Instead a formal model-theoretic semantics is defined which determines
when an execution algorithm is sound (gives correct results) and complete (gives
all results). Executing a SWRL rule does not have any side-effects, such as up-
dating a database, sending an email or selling shares.

Most currently available rule languages (such as ILOG JRules, JESS or RIF-
PRD) are tied to a specific execution algorithm (usually RETE-based). Rules
written in these engines often have side effects. This is particularly true when
the rules can access Java objects directly (as is the case with JRules and JESS).
The called Java methods can execute arbitrary code which could have side ef-
fects. This means that these engines cannot use different evaluation strategies,
because the order in which the rules are executed matters. This complicates the
task of writing rules, because it means the rule author needs to be aware of
any side-effects the rules might have as well as the algorithm that is used to
execute the rules. The rule author may also need to assign priorities to rules to
control the order in which rules are fired. This all makes rule authoring more of
a technical task than a business (domain expert) task, which negates one of the
purported benefits of using a rules engine: that business knowledge is separated
from technical IT knowledge and that the business itself has more direct control
over the behaviour of the application. In our experience this separation of busi-
ness knowledge and IT knowledge can only be achieved if the business knowledge
is encoded declaratively. This decouples it from the technical implementation of
the rules engine.

Having a declarative rule language that is independent of the evaluation
algorithm also has other benefits. One benefit is that IT can choose the most
efficient evaluation algorithm for the particular domain. IT can also change the
algorithm at any point without having to change the business rules.

Another benefit is that the business knowledge encoded in the rules can be
re-used in different and interesting ways. For example in one application we
wrote, we would use the rules to work out what questions to ask the user to
satisfy a certain goal. To do this we interpreted the rules using an algorithm
that worked out what properties needed values to satisfy a particular goal. We
then automatically generated fields in the user interface for those properties.

SWRL rules can also be used for validation. For example in the demo appli-
cation we have added the following rule:

technology-type(?context,VDSL2) ∧ region(?context, rural-victoria) →

This rule has an empty head. An empty head corresponds to false. The rule
is thus invalid if the body is true (a rule is invalid if the body is true and the
head is false). In plain English the rule says that VDSL2 is not available in the
rural Victoria region.

In the demo this rule can be triggered by selecting VDSL2 and Rural Victoria
and clicking the “Go” button. You will notice that an error message is displayed
and the “Selected Technology” and “Region” fields are highlighted to indicate
that inconsistent values were selected for those fields (see Fig. 1). The error mes-
sage comes from the rule’s label in the ontology. The application automatically
works out which fields to highlight by analysing the invalid rule. It effectively

5



builds a proof tree for the body of the invalid rule and compares that to the fields
that are currently being displayed to the user. If any of the currently displayed
fields correspond to atoms in the proof tree, they are highlighted.

The same validation rule could also be expressed using a production rule
system that integrates directly with a Java model (such as JRules). It would
look something like the following:

if
context.getTechnologyType() == VDSL2
and context.getRegion() == RURAL_VICTORIA

then
showErrorMessage("VDSL2 is not available in rural victoria")
highLightField("technology-type")
highLightField("region")

The problem here is that we have to encode user interface information in
the business rule. We cannot evaluate the rule a different way to work out what
properties in the model caused the error message to be displayed. This con-
flates business knowledge and user interface programming and makes the job of
maintaining the rules more onerous.

The last benefit of using SWRL that we will mention here is its tight inte-
gration with OWL. SWRL allows one to add rules that work directly with the
concepts and relationships defined in the OWL model. There is no impedance
mismatch between the modelling language and the rules language. JRules, JESS
and RIF-PRD require the business model to be mapped to an intermediate lan-
guage that the rule engine can interpret. This adds extra work for the maintainers
of the rules system, introduces another source of potential errors and makes it
harder for domain experts to add arbitrary new rules.

6 Debugging

Since the declarative semantics of SWRL are very similar to those of pure Prolog,
we can use well known declarative debugging techniques to debug the rules [3].
Declarative debugging is particularly suited to debugging business rules systems,
because it allows the rules to be debugged without having to know the intricacies
of the execution algorithm. This makes it easier for domain experts to debug the
rules. We have included some simple online declarative debugging facilities in
the demo. Clicking the “debug” link that appears next to some of the outputs
will start up the debugger. A screenshot of the debugger is shown in Fig. 2.

The debugger shows a lazily constructed proof tree of the computed answer
(since we use OLDT resolution the proof tree could be infinite, so it must be
lazily constructed). There are two types of nodes in the proof tree. The first type
represents a query. The children of a query node are the computed solutions to
the query. The rule name or OWL axiom that generated the solution is given
in parenthesis after the solution. The children of a solution node are the queries
used to directly compute that solution. Typically these correspond to the atoms
in the body of the rule that generated the solution.

6



��������	


�	���	��

��	
������������	�
�����	���	��

���	�����������

��
��	�������
����������	�����
�	���	��

���	�����������

���������������	
�
����������	�

��������������������
�������
�
����	������
������ ������!�	����

Fig. 2. SWRL declarative debugger

Fig. 3. ODASE Rules Workbench

As part of the ODASE toolset we have also developed a “rules workbench”
standalone application. This tool allows users to examine the reasons why a
particular value was produced (or not produced). It uses the same declarative
debugging principles described above, but in a more user-friendly skin.

Instead of exploring a proof tree of the rule evaluation, users interact with
an “explanation wizard”, which explains why a particular value was produced
without resorting to too many technical terms.

Fig. 3 shows how the fact that “Sport package” is offered as a possible product
option for the order is explained in the workbench.

7



The workbench also includes a “missing answer” explanation tool, which can
be used to diagnose why a particular answer was not inferred.

A video demo of the tool can be found at the following address: http://
demo.missioncriticalit.com/odase/rules-workbench/en/index.html.

7 Benchmarks

In this section we present some benchmarks of the backward-chaining rules en-
gine used in the demo. We show results for our engine compiled to C and Java.
We also show results for Pellet 2.0.0-rc7 [4]. Note that all engines give the same
results for the benchmark queries. The results are presented in Table 1.

Queries ODASE(C) ODASE(Java) Pellet

Query 1 7.6 25.5 819.5

Query 2 0.8 2.7 0.9

Query 3 0.0 0.2 0.7

Query 4 6.8 19.9 0.6

Query 5 43.6 70.3 0.7

Query 6 3.2 12.1 0.7

Query 1 6.3 25.7 1023.7

Query 2 1.0 3.0 0.9

Query 3 0.1 0.5 2.3

Query 4 5.9 18.4 0.6

Query 5 23.5 68.1 0.5

Query 6 3.2 11.2 0.5

Total 102.0 257.6 1851.6

Table 1. Benchmark results (times in milliseconds)

First we load the demo ontologies and some test input data. The input data
corresponds to the values of the input fields in the demo application. Next we run
6 queries. These queries are the same ones that are used to generate the output
in the demo. After running the 6 queries we change the input data slightly by
selecting a different product (the ”Product Selection” field in the demo). We
then run the 6 queries again. Pellet and the Java version of our engine were run
under a Nailgun server and we “warmed up” the JVM with a mock run. The
machine used for the benchmarks was a 2 GHz Intel Core 2 Duo with 2 GB of
memory. Times are in milliseconds.

The difference in performance characteristics between the ODASE engine and
Pellet highlights the different design goals of the two engines. Pellet is geared
more towards semantic web applications where you want to reason about and
explore mostly static data. The ODASE engine, on the other hand, is geared

8

http://demo.missioncriticalit.com/odase/rules-workbench/en/index.html
http://demo.missioncriticalit.com/odase/rules-workbench/en/index.html


towards using SWRL and OWL for online business applications where data
is constantly changing. Pellet is doing a lot of processing up-front, while the
ODASE engine is only doing the processing it needs to in order to answer each
query.

8 Conclusion

We have used SWRL in several commercial rule-based applications and found
that it has several advantages over other non-declarative alternatives:

– No side-effects means no need to prioritize rules or have knowledge of the
execution algorithm, simplifying rule design and maintenance.

– True separation of business and IT knowledge.
– Evaluation strategy can be optimized without changing rules.
– Encoded business knowledge can be used in multiple ways.
– Declarative debugging possible.
– Tight and natural integration with modelling language (OWL).
– Easy to extend with domain-specific builtins.

We have also developed a practical backward-chaining rule engine for exe-
cuting SWRL rules and have found its performance and scalability to be good
for real-world business applications.

References

1. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
SWRL: A semantic web rule language combining OWL and RuleML. W3C Member
Submission 21 May 2004.

2. P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL web ontology language
semantics and abstract syntax. W3C Recomendation 10 February 2004.

3. E. Y. Shapiro. Algorithmic Program Debugging. The MIT Press, Cambridge, Mass.,
1983.

4. E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-
DL reasoner. Web Semantics: Science, Services and Agents on the World Wide
Web, 5(2):51–53, June 2007.

5. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,
an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming, 29(1–3):17–64, 1996.

6. H. Tamaki and T. Sato. OLD resolution with tabulation. In Proceedings of ICLP
’86, pages 84–98, July 1986.

7. M. Uschold. Ontology-driven information systems: Past, present and future. Formal
Ontology in Information Systems, 2008.

8. M. Vanden Bossche, P. Ross, I. MacLarty, B. Van Nuffelen, and N. Pelov. Ontology
driven software engineering for real life applications. In Proceedings of the 3rd
International Workshop on Semantic Web Enabled Software Engineering, June 2007.

9


	Using SWRL for rule-driven applications
	Mission Critical

