[mercury-users] ambiguous overloading causes type ambiguity.
Terrence Brannon
princepawn at earthlink.net
Mon Apr 30 13:11:09 AEST 2001
[localhost:mercury/primality/divisors] metaperl% mmc -E --infer-all divisors.m
divisors.m:010: In clause for predicate `divisors:main/2':
divisors.m:010: error: ambiguous overloading causes type ambiguity.
divisors.m:010: Possible type assignments include:
divisors.m:010: V_15 :: string or (pred string)
You will need to add an explicit type qualification to resolve the
type ambiguity.
The way to add an explicit type qualification
is to insert a call to a dummy predicate whose `:- pred'
declaration specifies the appropriate argument types.
[localhost:mercury/primality/divisors] metaperl%
=== here is line 10:
main --> io__read_line_as_string(W0),
=== and here is the program
:- module divisors.
:- interface.
:- import_module io.
:- pred main(io__state::di, io__state::uo) is det.
:- implementation.
:- import_module std_util, int, list, bool, string.
main --> io__read_line_as_string(W0),
(
{ W0 = eof },
print("Nothing could be read"), nl
;
{ W0 = error(Err) },
print(io__error_message(Err)), nl
;
{ W0 = ok(W),
I = string__det_to_int(W) },
io__write_string(test(I))
).
% { I = string__det_to_int(W) }, io__write_string(test(I)).
% main --> io__read_line_as_string(result(W)), { I = string__det_to_int(W) }, io__write_string(test(I)).
% main --> io__read_line_as_string(io__result(W)), { I = string__det_to_int(W) }, io__write_string(test(I)).
:- func test(int) = string.
:- mode test(in) = out is det.
test(X) = Ans :- (
prime(X) -> Ans = "is prime"
;
Ans = "is not prime"
).
% Abelson and Sussman, SICP, Section 1.2.6
% Since ancient times, mathematicians have been fascinated by problems
% concerning prime numbers, and many people have worked on the problem
% of determining ways to test if numbers are prime. One way to test if
% a number is prime is to find the number's divisors. The following
% program finds the smallest integral divisor (greater than 1) of a
% given number n. It does this in a straightforward way, by testing n
% for divisibility by successive integers starting with 2.
% (define (smallest-divisor n)
% (find-divisor n 2))
% (define (find-divisor n test-divisor)
% (cond ((> (square test-divisor) n) n)
% ((divides? test-divisor n) test-divisor)
% (else (find-divisor n (+ test-divisor 1)))))
% (define (divides? a b)
% (= (remainder b a) 0))
:- func smallest_divisor(int) = int.
smallest_divisor(N) = find_divisor(N,2).
:- func find_divisor(int, int) = int.
find_divisor(N,TestDivisor) = Ans :-
(
TestDivisor*TestDivisor > N -> Ans = N
;
divides(TestDivisor,N) -> Ans = TestDivisor
;
Ans = find_divisor(N,(1 + TestDivisor))
)
.
:- pred divides(int, int).
:- mode divides(in , in ) is semidet.
divides(A,B) :- rem(B,A) = 0.
% We can test whether a number is prime as follows: n is prime if and only if n is its own smallest divisor.
% (define (prime? n)
% (= n (smallest-divisor n)))
:- pred prime(int).
:- mode prime(in) is semidet.
prime(N) :- N = smallest_divisor(N).
% The end test for find-divisor is based on the fact that if n is not
% prime it must have a divisor less than or equal to n. This means
% that the algorithm need only test divisors between 1 and
% n. Consequently, the number of steps required to identify n as prime
% will have order of growth (n).
--------------------------------------------------------------------------
mercury-users mailing list
post: mercury-users at cs.mu.oz.au
administrative address: owner-mercury-users at cs.mu.oz.au
unsubscribe: Address: mercury-users-request at cs.mu.oz.au Message: unsubscribe
subscribe: Address: mercury-users-request at cs.mu.oz.au Message: subscribe
--------------------------------------------------------------------------
More information about the users
mailing list