
The Mercury Language Reference Manual
Version DEV-syntax-ref

Fergus Henderson
Thomas Conway
Zoltan Somogyi
David Jeffery
Peter Schachte
Simon Taylor
Chris Speirs
Tyson Dowd
Ralph Becket
Mark Brown
Peter Wang

Copyright c© 1995–2012 The University of Melbourne.
Copyright c© 2013–2022 The Mercury team.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

i

Table of Contents

1 Introduction . 1

2 Syntax . 2
2.1 Lexical syntax . 2
2.2 Terms . 5
2.3 Builtin operators . 9
2.4 Items . 12

3 Semantics . 15
3.1 Introduction to declarative programming . 15

3.1.1 Declarative semantics . 15
3.1.2 Operational semantics . 16

3.2 Goals . 18
3.3 State variables . 23
3.4 DCG-goals . 30
3.5 Expressions . 32
3.6 Variable scoping . 36
3.7 Implicit quantification . 36
3.8 Elimination of double negation . 37

4 Types . 38
4.1 Builtin types . 38

4.1.1 Primitive types . 38
4.1.1.1 Signed integer types . 38
4.1.1.2 Unsigned integer types . 38
4.1.1.3 Floating-point type . 39
4.1.1.4 Character type . 39
4.1.1.5 String type . 39

4.1.2 Other builtin types . 39
4.1.2.1 Predicate and function types . 39
4.1.2.2 Tuple types . 39
4.1.2.3 The universal type . 40
4.1.2.4 The “state-of-the-world” type . 40

4.2 User-defined types . 40
4.2.1 Discriminated unions . 40
4.2.2 Equivalence types . 43
4.2.3 Abstract types . 43
4.2.4 Subtypes . 43

4.3 Predicate and function type declarations . 47
4.4 Field access functions . 49

4.4.1 Field selection . 49
4.4.2 Field update . 50

ii

4.4.3 User-supplied field access function declarations 51
4.4.4 Field access examples . 51

4.5 The standard ordering . 52

5 Modes . 54
5.1 Insts, modes, and mode definitions . 54
5.2 Predicate and function mode declarations . 56
5.3 Constrained polymorphic modes . 59
5.4 Different clauses for different modes . 60

6 Unique modes . 62
6.1 Destructive update . 62
6.2 Backtrackable destructive update . 62
6.3 Limitations of the current implementation . 63

7 Determinism . 64
7.1 Determinism categories . 64
7.2 Determinism checking and inference . 65
7.3 Replacing compile-time checking with run-time checking 69
7.4 Interfacing nondeterministic code with the real world 70
7.5 Committed choice nondeterminism . 71

8 User-defined equality and comparison 73

9 Higher-order programming 76
9.1 Creating higher-order terms . 76
9.2 Calling higher-order terms . 78
9.3 Higher-order insts and modes . 79

9.3.1 Builtin higher-order insts and modes . 79
9.3.2 Default insts for functions . 80
9.3.3 Combined higher-order types and insts 81

10 Modules . 83
10.1 The module system . 83
10.2 An example module . 84
10.3 Submodules . 85

10.3.1 Nested submodules . 85
10.3.2 Separate submodules . 86
10.3.3 Visibility rules . 87
10.3.4 Implementation bugs and limitations . 87

10.4 Module initialisation . 87
10.5 Module finalisation . 88
10.6 Module-local mutable variables . 88

iii

11 Type classes . 91
11.1 Typeclass declarations . 91
11.2 Instance declarations . 92
11.3 Abstract typeclass declarations . 95
11.4 Abstract instance declarations . 95
11.5 Type class constraints on predicates and functions 96
11.6 Type class constraints on type class declarations 97
11.7 Type class constraints on instance declarations 97
11.8 Functional dependencies . 98

12 Existential types . 101
12.1 Existentially typed predicates and functions 101

12.1.1 Syntax for explicit type quantifiers . 101
12.1.2 Semantics of type quantifiers . 101
12.1.3 Examples of correct code using type quantifiers 102
12.1.4 Examples of incorrect code using type quantifiers 103

12.2 Existential class constraints . 104
12.3 Existentially typed data types . 104
12.4 Some idioms using existentially quantified types 106

13 Type conversions . 109

14 Exception handling . 112

15 Formal semantics . 115

16 Foreign language interface 117
16.1 Calling foreign code from Mercury . 117

16.1.1 pragma foreign proc . 117
16.1.2 Foreign code attributes . 119

16.2 Calling Mercury from foreign code . 121
16.3 Data passing conventions . 122

16.3.1 C data passing conventions . 122
16.3.2 C# data passing conventions . 123
16.3.3 Java data passing conventions . 125

16.4 Using foreign types from Mercury . 128
16.5 Using foreign enumerations in Mercury code 129
16.6 Using Mercury enumerations in foreign code 131
16.7 Adding foreign declarations . 132
16.8 Declaring Mercury exports to other modules 133
16.9 Adding foreign definitions . 133
16.10 Language specific bindings . 134

16.10.1 Interfacing with C . 134
16.10.1.1 Using pragma foreign type for C 134
16.10.1.2 Using pragma foreign enum for C 135
16.10.1.3 Using pragma foreign export enum for C 136

iv

16.10.1.4 Using pragma foreign proc for C 136
16.10.1.5 Using pragma foreign export for C 137
16.10.1.6 Using pragma foreign decl for C 137
16.10.1.7 Using pragma foreign code for C 138
16.10.1.8 Memory management for C . 138
16.10.1.9 Linking with C object files . 139

16.10.2 Interfacing with C# . 140
16.10.2.1 Using pragma foreign type for C# 140
16.10.2.2 Using pragma foreign enum for C# 140
16.10.2.3 Using pragma foreign export enum for C# 140
16.10.2.4 Using pragma foreign proc for C# 140
16.10.2.5 Using pragma foreign export for C# 141
16.10.2.6 Using pragma foreign decl for C# 141
16.10.2.7 Using pragma foreign code for C# 142

16.10.3 Interfacing with Java . 142
16.10.3.1 Using pragma foreign type for Java 142
16.10.3.2 Using pragma foreign enum for Java 142
16.10.3.3 Using pragma foreign export enum for Java 143
16.10.3.4 Using pragma foreign proc for Java 143
16.10.3.5 Using pragma foreign export for Java 143
16.10.3.6 Using pragma foreign decl for Java 144
16.10.3.7 Using pragma foreign code for Java 144

17 Impurity declarations . 146
17.1 Choosing the right level of purity . 146
17.2 Purity ordering . 147
17.3 Impurity semantics . 147
17.4 Declaring impure functions and predicates 147
17.5 Marking a goal as impure . 148
17.6 Promising that a predicate is pure . 148
17.7 An example using impurity . 149
17.8 Using impurity with higher-order code . 150

17.8.1 Purity annotations on higher-order types 150
17.8.2 Purity annotations on lambda expressions 150
17.8.3 Purity annotations on higher-order calls 151

18 Solver types . 152
18.1 The ‘any’ inst . 152
18.2 Abstract solver type declarations . 152
18.3 Solver type definitions . 152
18.4 Implementing solver types . 154
18.5 Solver types and negated contexts . 154

19 Trace goals . 156

v

20 Pragmas . 159
20.1 Inlining . 159
20.2 Type specialization . 159

20.2.1 Syntax and semantics of type specialization pragmas . . . 159
20.2.2 When to use type specialization . 160
20.2.3 Implementation specific details . 160

20.3 Obsolescence . 160
20.4 No determinism warnings . 161
20.5 No dead predicate warnings . 161
20.6 Source file name . 162
20.7 Old pragma syntax . 162

21 Implementation-dependent extensions 164
21.1 Fact tables . 164
21.2 Tabled evaluation . 164
21.3 Termination analysis . 168
21.4 Feature sets . 169
21.5 Trailing . 171

21.5.1 Choice points . 171
21.5.2 Value trailing . 171
21.5.3 Function trailing . 172
21.5.4 Delayed goals and floundering . 173
21.5.5 Avoiding redundant trailing . 173

22 Bibliography . 177
[1] . 177
[2] . 177
[3] . 177
[4] . 177
[5] . 177

Chapter 1: Introduction 1

1 Introduction

Mercury is a general-purpose programming language, originally designed and implemented
by a small group of researchers at the University of Melbourne, Australia. Mercury is
based on the paradigm of purely declarative programming, and was designed to be useful
for the development of large and robust “real-world” applications. It improves on existing
logic programming languages by providing increased productivity, reliability and efficiency,
and by avoiding the need for non-logical program constructs. Mercury provides the tradi-
tional logic programming syntax, but also allows the syntactic convenience of user-defined
functions, smoothly integrating logic and functional programming into a single paradigm.

Mercury requires programmers to supply type, mode and determinism declarations for
the predicates and functions they write. The compiler checks these declarations, and rejects
the program if it cannot prove that every predicate or function satisfies its declarations. This
improves reliability, since many kinds of errors simply cannot happen in successfully com-
piled Mercury programs. It also improves productivity, since the compiler pinpoints many
errors that would otherwise require manual debugging to locate. The fact that declarations
are checked by the compiler makes them much more useful than comments to anyone who
has to maintain the program. The compiler also exploits the guaranteed correctness of the
declarations for significantly improving the efficiency of the code it generates.

To facilitate programming-in-the-large, to allow separate compilation, and to support
encapsulation, Mercury has a simple module system. Mercury’s standard library has a
variety of pre-defined modules for common programming tasks — see the Mercury Library
Reference Manual.

Chapter 2: Syntax 2

2 Syntax

A Mercury program consists of a set of modules. Each module is a file written using the
UTF-8 encoding of the Unicode character set, and contains a sequence of items. Each
item is a term followed by a period, and is interpreted as either a declaration or a clause
depending on the form it takes.

Mercury’s term syntax is similar to that of Prolog, with some notable distinctions:

• String constants are atomic; they are not abbreviations for lists of character codes (see
Section 2.1 [Lexical syntax], page 2).

• The operator table is fixed and cannot be modified. Some operators differ in priority
from those used in Prolog (see Section 2.3 [Builtin operators], page 9).

Mercury’s clause syntax for defining predicates is also similar to that of Prolog, includ-
ing the use of Definite Clause Grammar (DCG) notation. Mercury clauses, however, can
additionally define functions that users may invoke in expressions.

2.1 Lexical syntax

Mercury modules are comprised of a sequence of tokens separated by any amount of white-
space, comments, and line number directives. These separators are mostly ignored by the
parser, but in some cases whitespace may be required to separate tokens that would other-
wise be ambiguous. In other cases whitespace is not allowed, e.g., before the open-ct token,
or after a ‘.’ operator that would otherwise be interpreted as an end token.

Whitespace is defined to be the following characters:

Unicode name Unicode code point Notes
space U+0020
character tabulation U+0009 Horizontal-tab
line feed U+000A
line tabulation U+000B Vertical-tab
form feed U+000C
carriage return U+000D

The ‘%’ character starts a comment that continues to the end of the line. The ‘/*’
character sequence starts a comment that continues until the next occurrence of ‘*/’.

A line number directive consists of the character ‘#’, a positive integer specifying the
line number, and then a newline. Line number directives specify a current line number;
they are used in conjunction with the ‘pragma source_file’ declaration (see Section 20.6
[Source file name], page 162) to indicate that errors in the subsequent Mercury code should
be reported as coming from a different location. This is useful if the code in question was
generated by another tool, in which case the line number can be set to the corresponding
location in the original source file from which the Mercury code was derived. The Mercury
compiler can thereby issue more informative error messages using locations in the original
source file. A ‘#line ’ directive specifies the line number for the immediately following line.
Line numbers for lines after that are incremented as usual, so the second line after a ‘#100’
directive would be considered to be line number 101.

The different tokens in Mercury are as follows.

Chapter 2: Syntax 3

string A string is a sequence of characters enclosed in double quotes (").

Within a string, two adjacent double quotes stand for a single double quote.
For example, the string ‘ """" ’ is a string of length one, containing a single
double quote: the outermost pair of double quotes encloses the string, and the
innermost pair stand for a single double quote.

Strings may also contain backslash escapes. ‘\a’ stands for “alert” (a beep
character), ‘\b’ for backspace, ‘\r’ for carriage-return, ‘\f’ for form-feed, ‘\t’
for tab, ‘\n’ for newline, ‘\v’ for vertical-tab. An escaped backslash, single-
quote, or double-quote stands for itself.

The sequence ‘\x’ introduces a hexadecimal escape; it must be followed by a
sequence of hexadecimal digits and then a closing backslash. It is replaced
with the character whose character code is identified by the hexadecimal num-
ber. Similarly, a backslash followed by an octal digit is the beginning of an
octal escape; as with hexadecimal escapes, the sequence of octal digits must be
terminated with a closing backslash.

The sequence ‘\u’ or ‘\U’ can be used to escape Unicode characters. ‘\u’ must
be followed by the Unicode character code expressed as four hexadecimal dig-
its. ‘\U’ must be followed by the Unicode character code expressed as eight
hexadecimal digits. The highest allowed value is ‘\U0010FFFF’.

A backslash followed immediately by a newline is deleted; thus an escaped
newline can be used to continue a string over more than one source line. (String
literals may also contain embedded newlines.)

name A name is either an unquoted name, a quoted name, a graphic name, or a single
semicolon character. An unquoted name is a lowercase letter followed by zero
or more letters, underscores, and digits. A quoted name is any sequence of zero
or more characters enclosed in single quotes (’). Within a quoted name, two
adjacent single quotes stand for a single single quote. Quoted names can also
contain backslash escapes of the same form as for strings. A graphic name is a
sequence of one or more of the following characters

! & * + - : < = > ? @ ^ ~ \ # $. /

where the first character is not ‘#’.

An unquoted name, graphic name, or semicolon is treated as equivalent to a
quoted name containing the same sequence of characters.

operator An operator is one of the builtin operators (see Section 2.3 [Builtin operators],
page 9) or a user-defined operator. A user-defined operator is a name, module
qualified name (see Section 10.1 [The module system], page 83), or variable, en-
closed in grave accents (backquotes). User-defined operators are left-associative
infix operators that bind more strongly than most other operators; see the
builtin operator table for their relative binding strength.

The builtin operators, with the exception of comma, are all names, and as
such they can be used without arguments supplied. For example, ‘f(+)’ is
syntactically valid. In some cases parentheses may be required to limit the
scope of an operator without arguments, e.g. if it appears as an argument to
another operator. The comma operator is not a name and therefore requires
single quotes in order to be used without arguments.

Chapter 2: Syntax 4

Note that an operator in single quotes is still an operator, so any requirement
for parentheses will remain unchanged.

variable A variable is an uppercase letter or underscore followed by zero or more letters,
underscores, and digits. A variable token consisting of single underscore is
treated specially: each instance of ‘_’ denotes a distinct variable. (In addition,
variables starting with an underscore are presumed to be “don’t-care” variables;
the compiler will issue a warning if a variable that does not start with an
underscore occurs only once, or if a variable starting with an underscore occurs
more than once in the same scope.)

integer An integer is either a decimal, binary, octal, hexadecimal, or character-code
literal. A decimal literal is any sequence of decimal digits. A binary literal is
‘0b’ followed by any sequence of binary digits. An octal literal is ‘0o’ followed
by any sequence of octal digits. A hexadecimal literal is ‘0x’ followed by any
sequence of hexadecimal digits. A character-code literal is ‘0’’ followed by any
single character.

Decimal, binary, octal and hexadecimal literals may be optionally terminated
by a suffix that indicates whether the literal represents a signed or unsigned
integer and what the size of that integer is. These suffixes are:

Suffix Signedness Size
i or no suffix Signed Implementation-defined
i8 Signed 8-bit
i16 Signed 16-bit
i32 Signed 32-bit
i64 Signed 64-bit
u Unsigned Implementation-defined
u8 Unsigned 8-bit
u16 Unsigned 16-bit
u32 Unsigned 32-bit
u64 Unsigned 64-bit

For decimal, binary, octal and hexadecimal literals, an arbitrary number of
underscores (‘_’) may be inserted between the digits. An arbitrary number of
underscores may also be inserted between the radix prefix (i.e. ‘0b’, ‘0o’ and
‘0x’) and the initial digit. Similarly, an arbitrary number of underscores may
be inserted between the final digit and the signedness suffix. The purpose of
the underscores is to improve readability; they do not affect the numeric value
of the literal.

float A floating point literal consists of a sequence of decimal digits, a decimal point
(‘.’) and a sequence of digits (the fraction part), and the letter ‘E’ (or ‘e’),
an optional sign (‘+’ or ‘-’), and then another sequence of decimal digits (the
exponent). The fraction part or the exponent (but not both) may be omitted.

An arbitrary number of underscores (‘_’) may be inserted between the digits in
a floating point literal. Underscores may not occur adjacent to any non-digit
characters (i.e. ‘.’, ‘e’, ‘E’, ‘+’ or ‘-’) in a floating point literal. The purpose of

Chapter 2: Syntax 5

the underscores is to improve readability; they do not affect the numeric value
of the literal.

implementation-defined-literal
An implementation-defined literal consists of a dollar sign (‘$’) followed by an
unquoted name.

open-ct A left parenthesis, ‘(’, that is not preceded by whitespace.

open A left parenthesis, ‘(’, that is preceded by whitespace.

close A right parenthesis, ‘)’.

open-list A left square bracket, ‘[’.

close-list A right square bracket, ‘]’.

open-curly
A left curly bracket, ‘{’.

close-curly
A right curly bracket, ‘}’.

ht-sep A “head-tail separator”, i.e. a vertical bar, ‘|’.

comma A comma, ‘,’.

end A full stop (period), ‘.’.

2.2 Terms

Terms are the basic construct used by most syntactic forms in Mercury: declarations,
clauses, and their sub-components, all adhere to the syntax rules for terms. Thus, the set
of syntactically valid declarations is a subset of the set of syntactically valid terms, and
likewise for the set of syntactically valid clauses, etc.

The term syntax is summarized by the following rules. (All of this information can be
found in the descriptions below the rules.)

term = core-term | special-term

core-term = variable | constant | functor-term

constant = integer | float | string | implementation-defined-literal

functor-term = name | name open-ct functor-args close

functor-args = functor-arg | functor-arg ‘,’ functor-args

functor-arg = arg | arg ‘::’ arg

args = arg | arg ‘,’ args

arg = term, where the term is not an operator term with priority >= 1000

Chapter 2: Syntax 6

special-term = operator-term | list-term | tuple-term | apply-term | paren-term

operator-term = term operator term | operator term | operator term term,
where the term is constructed according to the requirements of the operator
(see Section 2.3 [Builtin operators], page 9)

list-term = ‘[’ list-body? ‘]’

list-body = arg | arg ‘,’ list-body | arg ht-sep term

tuple-term = ‘{’ args? ‘}’

apply-term = term open-ct args close,
where the term is not a name or operator term

paren-term = ‘(’ term ‘)’

Valid terms can be described in the following way.

term A term is either a core term or a special term. A term normalization procedure,
given below, translates terms that may contain special terms into terms that
are only constructed from core terms; two terms are considered syntactically
equivalent if they translate to the same term. Syntactically equivalent terms
can be used interchangeably anywhere in a module (e.g. operator syntax can be
used in declarations and clauses, in particular those that define an operator).

Note that there can be further equivalences in some contexts, e.g. an if-then-
else can be written in either of two equivalent forms. Such equivalences will be
covered in the relevant chapters.

core-term A core term is a variable, a constant, or a functor-term.

constant A constant is an integer, a float, a string, or an implementation-defined-literal.

functor-term
A functor term is either a name or a compound term. A compound term is
a name followed without any intervening whitespace by an open parenthesis
(i.e. an open-ct token), then followed by a functor argument list and a close
parenthesis. E.g., ‘foo(X,Y)’ is a compound term, whereas ‘foo (X,Y)’ and
‘foo()’ are not (the first because the space after ‘foo’ is not allowed, the second
because the parentheses must be omitted if there are no arguments).

The principal functor of a functor term is the name and arity of the term,
separated by a slash, where the arity is the number of arguments (or zero if
there are no arguments). For example, the principal functor of ‘foo(bar,baz)’
is ‘foo/2’, while the principal functor of ‘foo’ is ‘foo/0’. The principal functor
of a special term is determined after normalization.

Note that the word “functor” has a number of definitions, but in Mercury it just
means a symbol to which arguments can be applied, and which has no intrinsic
meaning of its own. It is a syntactic concept that applies to all functor terms.
In specific contexts functors may also be referred to as type constructors, data

Chapter 2: Syntax 7

constructors (or just constructors), predicates, functions, etc. The principal
functor may also be referred to as the “top-level constructor”.

functor-args
A functor argument list is a sequence of one or more functor arguments, sepa-
rated by commas.

functor-arg
A functor argument is either a single argument or two arguments separated by
a ‘::’ operator (the latter form is for mode qualifiers; see Section 5.4 [Different
clauses for different modes], page 60).

args An argument list is a sequence of one or more arguments, separated by commas.

arg An argument is any term, except operator terms where the operator does not
bind more tightly than comma (i.e., where the priority is greater than or equal
to 1000). In such a situation parentheses can be used, e.g. ‘f((A,B))’ is a com-
pound term with one argument that is a parenthesized operator term, whereas
‘f(A,B)’ is a compound term with two arguments (and no operators).

special-term
A special term is an operator term, a list term, a tuple term, an apply term, or
a parenthesized term. The term normalization procedure, below, defines how
these terms are represented internally as core terms.

operator-term
An operator term is a term constructed using an operator, which complies with
the rules for constructing terms using that operator (see Section 2.3 [Builtin
operators], page 9). Operator terms can be infix, such as ‘A + B’, unary-prefix,
such as ‘not P’, or binary-prefix, such as ‘some Vars Goal’.

list-term A list term is an open square bracket (an open-list token), followed by an
optional list body, followed by a close square bracket (a close-list token). If the
list body is omitted it is the empty list. If present, the list body is an argument
list, optionally followed by a vertical bar (a ht-sep token) followed by a term.
E.g., ‘[]’, ‘[X]’, and ‘[1, 2 | Tail]’ are all valid list terms. The argument list
gives the elements appearing at the front of the list. The term following the
vertical bar, if present, gives the tail of the list (i.e. the remaining elements),
otherwise the tail is the empty list. Note that technically the tail does not have
to be a list for this to be syntactically valid, although generally it would need
to be in order to be type correct.

tuple-term A tuple term is an open curly bracket (an open-curly token), followed by an
optional argument list, followed by a close curly bracket (a close-curly token).
If the argument list is omitted it is the empty tuple, otherwise the arguments
give the components of the tuple. E.g., {} and {1,’2’,"three"} are valid
tuple terms.

apply-term
An apply-term is a “closure” term, which can be any term other than a name
or an operator term, followed without any intervening whitespace by an open
parenthesis (an open-ct token), an argument list, and a close parenthesis (a

Chapter 2: Syntax 8

close token). E.g., ‘A(B,C)’ is a valid apply-term. An apply-term represents
the closure (i.e. a higher-order value) applied to the arguments.

Note that although the closure term cannot be an operator term, it can be
a parenthesized term. Thus ‘(Var ^ foo)(Arg1, Arg2)’ is a valid apply-term,
whereas ‘Var ^ foo(Arg1, Arg2)’ is not (it is an operator term whose second
argument is a compound term).

paren-term
A parenthesized term is just a term enclosed in parentheses. E.g., (X-Y) is a
valid parenthesized term.

The term normalization procedure works by rewriting special terms that occur anywhere
within a term (i.e. at the top level or as some descendant) according to a set of rewriting
rules, and repeating until no rules can be further applied. The rules are as follows.

term1 ‘name‘ term2 7→ name(term1, term2)

term1 ‘var‘ term2 7→ var(term1, term2)

term1 operator term2 7→ ’operator’(term1, term2)

operator term 7→ ’operator’(term)

operator term1 term2 7→ ’operator’(term1, term2)

[] 7→ ’[]’

[arg] 7→ ’[|]’(arg, ’[]’)

[arg , list-body] 7→ ’[|]’(arg, [list-body])

[arg | term] 7→ ’[|]’(arg, term)

{ } 7→ ’{}’

{ args } 7→ ’{}’(args)

term(args) 7→ ’’(term, args)

(term) 7→ term

For example, the following terms are all syntactically equivalent (i.e. they are equal after
normalization). The last is constructed from core terms; the others all normalize to this
term. From the last one it can be seen that the principal functor of all of them is ’[|]’/2.

[1, 2, 3]

[1, 2, 3 | []]

[1, 2 | [3]]

[1 | [2, 3]]

’[|]’(1, ’[|]’(2, ’[|]’(3, ’[]’)))

Similarly, the following terms are all syntactically equivalent. The principal functor in this
case is ’+’/2.

A * B + C

(A * B) + C

’+’(’*’(A, B), C)

Chapter 2: Syntax 9

2.3 Builtin operators

The following table lists all of Mercury’s builtin operators. Operators with a low “Priority”
bind more tightly than those with a high “Priority”. For example, given that + has priority
500 and * has priority 400, the term 2 * X + Y is equivalent to (2 * X) + Y. User-defined
operators of the form ‘op‘ are also included in the table to indicate their relative priority.

The “Specifier” field indicates what structure terms constructed with an operator are
allowed to take. “f” represents the operator and “x” and “y” represent arguments. “x”
represents an argument whose priority must be strictly lower than that of the operator. “y”
represents an argument whose priority is lower or equal to that of the operator. For example,
“yfx” indicates a left-associative infix operator, while “xfy” indicates a right-associative infix
operator.

Note that operators are a syntactic concept. The ‘+’ infix operator, for example, is only a
symbol; it doesn’t mean addition unless you write or import code that defines it as addition.
Modules in the Mercury standard library, such as int and float, provide such arithmetic
definitions. To illustrate further, the ‘-’ infix operator is defined as subtraction by those
modules but is defined as a pair constructor by the pair module.

Operator Specifier Priority

. yfx 10

! fx 40

!. fx 40

!: fx 40

@ xfx 90

^ xfy 99

^ fx 100

event fx 100

: yfx 120

‘op‘ yfx 120

** xfy 200

- fx 200

\ fx 200

* yfx 400

/ yfx 400

// yfx 400

<< yfx 400

>> yfx 400

div yfx 400

mod xfx 400

rem xfx 400

for xfx 500

+ fx 500

+ yfx 500

++ xfy 500

- yfx 500

-- yfx 500

Chapter 2: Syntax 10

/\ yfx 500

\/ yfx 500

.. xfx 550

:= xfx 650

=^ xfx 650

< xfx 700

= xfx 700

=.. xfx 700

=:= xfx 700

=< xfx 700

== xfx 700

=\= xfx 700

> xfx 700

>= xfx 700

@< xfx 700

@=< xfx 700

@> xfx 700

@>= xfx 700

\= xfx 700

\== xfx 700

~= xfx 700

is xfx 701

and xfy 720

or xfy 740

func fx 800

impure fy 800

pred fx 800

semipure fy 800

\+ fy 900

not fy 900

when xfx 900

~ fy 900

<= xfy 920

<=> xfy 920

=> xfy 920

all fxy 950

arbitrary fxy 950

atomic fxy 950

disable_warning fxy 950

disable_warnings fxy 950

promise_equivalent_solutions fxy 950

promise_equivalent_solution_sets fxy 950

promise_exclusive fy 950

promise_exclusive_exhaustive fy 950

promise_exhaustive fy 950

promise_impure fx 950

promise_pure fx 950

Chapter 2: Syntax 11

promise_semipure fx 950

require_complete_switch fxy 950

require_switch_arms_det fxy 950

require_switch_arms_semidet fxy 950

require_switch_arms_multi fxy 950

require_switch_arms_nondet fxy 950

require_switch_arms_cc_multi fxy 950

require_switch_arms_cc_nondet fxy 950

require_switch_arms_erroneous fxy 950

require_switch_arms_failure fxy 950

require_det fx 950

require_semidet fx 950

require_multi fx 950

require_nondet fx 950

require_cc_multi fx 950

require_cc_nondet fx 950

require_erroneous fx 950

require_failure fx 950

trace fxy 950

try fxy 950

some fxy 950

, xfy 1000

& xfy 1025

-> xfy 1050

; xfy 1100

or_else xfy 1100

then xfx 1150

if fx 1160

else xfy 1170

:: xfx 1175

==> xfx 1175

where xfx 1175

---> xfy 1179

catch xfy 1180

type fx 1180

solver fy 1181

catch_any xfy 1190

end_module fx 1199

import_module fx 1199

include_module fx 1199

initialise fx 1199

initialize fx 1199

finalise fx 1199

finalize fx 1199

inst fx 1199

instance fx 1199

mode fx 1199

Chapter 2: Syntax 12

module fx 1199

pragma fx 1199

promise fx 1199

rule fx 1199

typeclass fx 1199

use_module fx 1199

--> xfx 1200

:- fx 1200

:- xfx 1200

?- fx 1200

2.4 Items

Items are the top-level syntactic elements of Mercury modules. Their syntax is summarized
by the following rules. (All of this information can be found in the descriptions below the
rules.)

item = (‘:-’ declaration | clause) end

declaration = type-system-decl | mode-system-decl | module-system-decl
| pragma-decl

clause = rule | dcg-rule | fact

rule = head-term ‘:-’ goal

dcg-rule = predicate-head-term ‘-->’ dcg-goal

fact = head-term, where the principal functor is not ‘:-/1’, ‘:-/2’, or ‘-->/2’

head-term = function-head-term | predicate-head-term

function-head-term = head ‘=’ expression

predicate-head-term = head, where the principal functor is not ‘=/2’

head = functor-term, where the arguments are expressions

Valid items can be described in the following way.

item Each item in a Mercury module is a term followed by an end token (a period).
If the principal functor of the term is ‘:-/1’, it is a declaration item and the
argument is the declaration. Otherwise it is a clause item and the term is the
clause. Note that we often use “declaration” and “clause” informally to refer
to the items themselves (i.e., including the end token).

declaration
Declarations in Mercury are used to declare things for the type system, the
mode system, and the module system, as well as to give compiler directives

Chapter 2: Syntax 13

regarding a number of features. Details of their syntax are covered in later
chapters.

type-system-decl
These declarations relate to the type system. ‘type’ declarations declare and de-
fine types (see Section 4.2 [User-defined types], page 40 and Chapter 18 [Solver
types], page 152). ‘pred’ and ‘func’ declarations declare the types of predi-
cates and functions (see Section 4.3 [Predicate and function type declarations],
page 47). ‘typeclass’ and ‘instance’ declarations declare typeclasses and in-
stances (see Chapter 11 [Type classes], page 91).

mode-system-decl
‘inst’ and ‘mode’ declarations relate to the mode system (see Chapter 5 [Modes],
page 54).

module-system-decl
Declarations relating to the module system are: ‘module’, ‘interface’,
‘implementation’, ‘import_module’, ‘use_module’, ‘include_module’,
‘initialise’, ‘finalise’, ‘mutable’, and ‘end_module’. (See Chapter 10
[Modules], page 83.)

pragma-decl
‘pragma’ declarations give compiler directives (see Chapter 20 [Pragmas],
page 159), are used in the foreign language interface (see Chapter 16 [Foreign
language interface], page 117), and in the purity system (see Section 17.6
[Promising purity], page 148).

clause A clause provides part of the definition of a function or predicate. There are
three types of clauses: if the principal functor is ‘:-/2’, the clause is a rule; if
the principal functor is ‘-->/2’, the clause is a DCG-rule; otherwise, the clause
is a fact.

Each clause has a head term. For rules and DCG-rules, the head term is the
left hand side. For facts the head term is the entire term. Rules and DCG-rules
also have a body, which is the right hand side.

rule A rule is a clause, recognizable by the use of ‘:-/2’, that has a goal as its body
(see Section 3.2 [Goals], page 18).

dcg-rule A DCG-rule is a clause, recognizable by the use of ‘-->/2’, that has a predicate
head term and a DCG-goal as its body. It is an abbreviation for a rule with
two fresh variables implicitly added to the argument list. The DCG-goal is
transformed into a goal that uses these variables in an idiosyncratic way. (See
Section 3.4 [DCG-goals], page 30).

DCG notation is intended for writing parsers and sequence generators in a
particular style; in the past it has also been used to thread an implicit state
variable, typically the I/O state, through code (something that can also be done
in that style). We now recommend that DCG notation be reserved for writing
parsers and sequence generators, and that state variable syntax (see Section 3.3
[State variables], page 23), which performs a similar transformation but is more
flexible, be used for other purposes such as threading state variables.

Chapter 2: Syntax 14

fact A fact is a clause that has no body. It has the same meaning as a rule with a
head term identical to the fact, and a body of true.

head-term If the principal functor of the head term is ‘=/2’ then it is a function head term,
otherwise it is a predicate head term.

function-head-term
A function head term is the head term of a clause that provides part of a
function definition, and that is recognizable by the use of ‘=/2’. The term on
the left hand side is the function’s head; the term on the right hand side is an
expression that represents the function return value.

predicate-head-term
A predicate head term is a head on its own with no return expression, that
provides part of a predicate definition.

head The head of a function or predicate is a functor term whose arguments are
expressions (see Section 3.5 [Expressions], page 32), optionally annotated with
mode qualifiers (see Section 5.4 [Different clauses for different modes], page 60).
The principal functor determines which function or predicate is being defined.

For example, the following three items are clauses. The first is a function fact that defines a
function named ‘loop/1’, a not particularly useful function. The second is a predicate fact
and the third is a predicate rule, which between them define a predicate named ‘append/3’.

loop(X) = 1 + loop(X).

append([], Bs, Bs).

append([X | As], Bs, [X | Cs]) :-

append(As, Bs, Cs).

The following example contains a number of declaration and clause items, and forms a
syntactically valid module. (The semantics of the clauses will be covered in the next chapter.
Note that the length/1 function in the standard library is implemented more efficiently.)

:- module slow_length.

:- interface.

:- import_module list.

:- func length(list(T)) = int.

:- implementation.

:- import_module int. % for ’+’

length([]) = 0.

length([_ | Xs]) = 1 + length(Xs).

:- end_module slow_length.

Chapter 3: Semantics 15

3 Semantics

This chapter covers the semantics of Mercury clauses, and the goals and expressions they
contain. The first section gives an informal introduction to declarative programming; if you
are already familiar with this topic, and logic programming in particular, you may wish to
skip it and start with Section 3.2 [Goals], page 18.

Full details of the language semantics can be found in Chapter 15 [Formal semantics],
page 115.

3.1 Introduction to declarative programming

Declarative programming is concerned with the idea of “truth”. For example, it’s true that
1 plus 1 is 2, and that the length of the list [1, 2, 3] is 3. Statements like this that may
be either true or false are known as propositions, e.g., 1 + 1 = 2 and 1 + 2 = 5 are both
propositions; if + is interpreted as integer addition then the first proposition is true and the
second is false.

While programming languages that fit withim the functional programming or logic pro-
gramming paradigms are typically considered “declarative”, there is no agreed upon defini-
tion of the term. One notable characteristic of declarative languages, however, is that they
have both a declarative and an operational semantics.

The operational semantics defines how programs should be executed by the system;
programming languages generally provide an operational semantics. A declarative semantics
is not generally provided, and yet is conceptually simpler as it is only concerned with what
is true about the inputs and outputs of code, and not the details of execution. This is often
expressed by saying that the declarative semantics is about “what” whereas the operational
semantics is about “how”.

The advantage of having a declarative semantics in addition to an operational semantics
is that, despite its relative simplicity, it can be very effective in analysing the correctness of
code. For deeper analyses, the operational semantics can still be used.

3.1.1 Declarative semantics

Mercury clauses say things that are true about the function or predicate being defined. To
illustrate we will use an example from the previous chapter. (Note that, here and below,
some declarations would need to be added to make this compile.)

length([]) = 0.

length([_ | Xs]) = 1 + length(Xs).

Both of these clauses are facts about the function length/1. The first simply states that the
length of an empty list is zero. The second is a little more complicated because it involves
variables, but it states that no matter what expressions we substitute for the variables ‘Xs’
and ‘_’, the length of ‘[_ | Xs]’ will be one greater than the length of ‘Xs’. In other words,
the length of a non-empty list is one greater than the length of its tail.

These two statements are true according to our intuitive idea of length. Furthermore,
we can see that the clauses cover every possible list, since every list is either empty or
non-empty, and every non-empty list has a tail that is also a list. Perhaps surpisingly, this
is enough to conclude that our implementation of list length is correct, at least as far as
arguments and return values are concerned.

Chapter 3: Semantics 16

As another example, the following clauses define a predicate named append/3, which is
intended to be true if the third argument is the list that results from appending the first
and second arguments. (Equivalently, we could say that it is possible to split the list in the
third argument to produce the first and second arguments.)

append([], Bs, Bs).

append([X | As], Bs, [X | Cs]) :-

append(As, Bs, Cs).

The first clause is a fact that states if you append the empty list and any other list, the
result will be the same as that other list. The second clause is a rule; these are taken as
logical implications in which the body implies the head (i.e. ‘:-’ is interpreted as reverse
implication). So this is stating that, for any substitution, if ‘Cs’ is the result of appending
‘As’ and ‘Bs’, then ‘[X | Cs]’ is the result of appending ‘[X | As]’ and ‘Bs’.

Again, both clauses are true according to the intended interpretation, which is defined as
all of the propositions about the functions and predicates in the program that the program-
mer intends to be true. And the definition is complete, meaning that for every proposition
that is intended to be true there is either a fact that covers it, or a rule whose head covers it
and (under the same substitution) whose body is intended to be true. Thus we can conclude
in a similar way to above that our code is correct.

The declarative semantics of a Mercury program is defined as all of the propositions
that can be inferred to be true from the clauses of the program (with some additional
“axioms” that are not important right now). If the program is producing incorrect output,
this is saying that there is a difference between the declarative semantics and the intended
interpretation. From the above discussion, there must be some clause that is false in the
intended interpretation, or some definition that is incomplete.

This is the advantage of declarative programming. Despite the semantics being relatively
simple—you only need to know about which propositions are true and which are false, and
not how the program actually executes—it is still effective in reasoning about your program,
even so far as to be able to localize a bug observed in the output down to individual clauses
or definitions.

Not every question can be answered by the declarative semantics. It doesn’t tell us how
the program executes, so it can’t tell us whether our program will terminate, for example,
or what its computational complexity is. For that we need an operational semantics, which
is the subject of the next section.

3.1.2 Operational semantics

Execution in Mercury starts with a goal. This is a proposition that may contain some
variables, and the aim of execution is to find a substitution for which the proposition is
true. If it does, we refer to this as success, and we refer to the substitution that was found
as a solution. If execution determines that there are no such substitutions, we refer to this
as failure.

Say, for example, we start with a goal of ‘N = length([1, 2])’. Function evaluation is
strict, depth-first, and left-to-right, so we want to call the length/1 function first. To do
this, we match the argument with the heads of the clauses that define the function to find the
clause that is applicable. In this case the second clause matches, with the substitution of Xs
7→ [2] (the substitution for ‘_’ is irrelevant, since any other occurrence of ‘_’ is considered

Chapter 3: Semantics 17

a distinct variable). Applying this substitution to the body then replacing it in the goal
gives us a new goal, namely ‘N = 1 + length([2])’.

Repeating this process a second time gives us the goal ‘N = 1 + 1 + length([])’. When
we call the function the third time it will match the first clause, and the new goal will be
‘N = 1 + 1 + 0’. Now we can evaluate the ‘+/2’ calls and get a result of ‘N = 2’. It is trivial
to find a substitution that makes this proposition true: just map N to the constant 2.

Now consider the goal ‘append(As, Bs, [1])’. In this case the first two arguments are
free, meaning that they are variables that are not mapped to anything in the current sub-
stitution, and the third argument is ground, meaning that it doesn’t contain any variables
after applying the current substitution. As before we try to match (or unify) the goal with
a clause, but in this case both clauses match! We arbitrarily pick the first one, but we also
push a choice point onto a stack, which will allow us to return to this point later on and
try the other clause if we need to. Matching with the first clause gives us the substitution
As 7→ [], Bs 7→ [1]. Since this clause is a fact, we succeed with this substitution as our
solution.

If a later goal fails, we pop the previous choice point off the stack in order to search
for a different solution. This time we want to try unifying our goal with the head of the
second clause. That is, we want to find a substitution such that append(As, Bs, [1]) =

append([X1 | As1], Bs1, [X1 | Cs1]). (The variables from the clause have been given a
numerical suffix, which is to indicate that they came from a different scope and are not the
same variables as those in the goal.) The substitution we use is As 7→ [1 | As1], Bs 7→

Bs1, X1 7→ 1, Cs1 7→ []; you can check that this does indeed unify the two terms. Note
that information is effectively flowing in both directions: variables from both the goal and
the clause (i.e. the caller and callee) are bound by this substitution. This is a key difference
from pattern matching in many other languages, in which only variables in the pattern are
bound.

Applying this substitution to the body of the selected clause gives us our new goal,
‘append(As1, Bs1, [])’. This time only the first clause matches, with the substitution of
As1 7→ [], Bs1 7→ []. The clause is a fact, so this is a solution to this call to append.
To find the solution to the parent goal we compose this substitution with the one from
before, giving As 7→ [1], Bs 7→ []. We have now found two solutions for our goal: one
with As being the empty list and Bs being [1], and the other with the bindings for As and
Bs swapped. These are all of the possible solutions; if we wanted to search for another we
would find the choice point stack to be empty, hence we would fail.

One final observation is worth making before we finish this section. We saw earlier that
the arguments at the start of the call were either free or ground; in each solution we see
that the arguments are all ground. We consider arguments that are ground at the start to
be inputs, and arguments that are free at the start and ground at the end to be outputs.
The pattern of inputs and outputs for a predicate or function call is known as its mode; we
can declare the mode we have used here as follows.

:- mode append(out, out, in) is multi.

More information can be found in later chapters; also, see the Mercury Library Reference
Manual for the full set of modes declared for ‘append/3’.

Chapter 3: Semantics 18

3.2 Goals

A goal is a term of one of the following forms.

Goal1, Goal2

A conjunction. Goal1 and Goal2 must be valid goals.

Goal1 & Goal2

A parallel conjunction. This has the same declarative semantics as the normal
conjunction. Operationally, implementations may execute Goal1 & Goal2 in
parallel. The order in which parallel conjuncts begin execution is not fixed. It is
an error for Goal1 or Goal2 to have a determinism other than det or cc_multi.
See Section 7.1 [Determinism categories], page 64.

Goal1 ; Goal2

where Goal1 is not of the form ‘Goal1a -> Goal1b ’: a disjunction. Goal1 and
Goal2 must be valid goals.

true The empty conjunction. Always succeeds exactly once.

fail The empty disjunction. Always fails.

if CondGoal then ThenGoal else ElseGoal

CondGoal -> ThenGoal ; ElseGoal

An if-then-else. The two different syntaxes have identical semantics. CondGoal,
ThenGoal, and ElseGoal must be valid goals. Note that the “else” part is not
optional.

The declarative semantics of an if-then-else is given by (CondGoal, Then-

Goal ; not(CondGoal), ElseGoal), but the operational semantics is differ-
ent, and it is treated differently for the purposes of determinism inference (see
Chapter 7 [Determinism], page 64). Operationally, it executes the CondGoal,
and if that succeeds, then execution continues with the ThenGoal; otherwise,
i.e. if CondGoal fails, it executes the ElseGoal. Note that CondGoal can be
nondeterministic—unlike Prolog, Mercury’s if-then-else does not commit to the
first solution of the condition if the condition succeeds.

If CondGoal is an explicit existential quantification, some Vars Quantified-

CondGoal , then the variables Vars are existentially quantified over the conjunc-
tion of the goals QuantifiedCondGoal and ThenGoal (see existential quantifi-
cations, below). Explicit existential quantifications that occur as subgoals of
CondGoal do not affect the scope of variables in the “then” part. For example,
in

(if some [V] C then T else E)

the variable V is quantified over the conjunction of the goals C and T because
the top-level goal of the condition is an explicit existential quantification, but
in

(if true, some [V] C then T else E)

the variable V is only quantified over C because the top-level goal of the con-
dition is not an explicit existential quantification.

Chapter 3: Semantics 19

not Goal

\+ Goal A negation. The two different syntaxes have identical semantics. Goal must be
a valid goal. Both forms are equivalent to ‘if Goal then fail else true’.

Expr1 = Expr2

A unification. Expr1 and Expr2 must be valid expressions.

Expr1 \= Expr2

An inequality. Expr1 and Expr2 must be valid expressions. This is an abbre-
viation for ‘not (Expr1 = Expr2)’.

some Vars Goal

An existential quantification. Goal must be a valid goal. Vars must be a list
whose elements are either variables or state variables. (A single list may contain
both.) The case where they are state variables is described in Section 3.3 [State
variables], page 23; here we discuss the case where they are plain variables.

Each existential quantification introduces a new scope. The variables in Vars
are local to the goal Goal: for each variable named in Vars, any occurrences of
variables with that name in Goal are considered to name a different variable
than any variables with the same name that occur outside of the existential
quantification.

Operationally, existential quantification has no effect, so apart from its effect
on variable scoping, ‘some Vars Goal ’ is the same as ‘Goal ’.

Mercury’s rules for implicit quantification (see Section 3.7 [Implicit quantifica-
tion], page 36) mean that variables are often implicitly existentially quantified.
There is usually no need to write existential quantifiers explicitly.

all Vars Goal

A universal quantification. Goal must be a valid goal. Vars must be a list of
variables (they may not be state variables). This goal is an abbreviation for
‘not (some Vars not Goal)’.

Goal1 => Goal2

An implication. This is an abbreviation for ‘not (Goal1, not Goal2)’.

Goal1 <= Goal2

A reverse implication. This is an abbreviation for ‘not (Goal2, not Goal1)’.

Goal1 <=> Goal2

A logical equivalence. This is an abbreviation for ‘(Goal1 => Goal2), (Goal1

<= Goal2 ’).

call(Closure)

call(Closure1, Arg1)

call(Closure2, Arg1, Arg2)

call(Closure3, Arg1, Arg2, Arg3)

... A higher-order predicate call (ordinary first-order predicate calls are
documented below). The closure and arguments must be valid expressions.
‘call(Closure)’ just calls the specified closure. The other forms append the
specified arguments onto the argument list of the closure before calling it. See
Chapter 9 [Higher-order], page 76.

Chapter 3: Semantics 20

Expr

Expr(Arg1)

Expr(Arg1, Arg2)

Expr(Arg1, Arg2, Arg3)

... A higher-order predicate call. Expr must be a valid expression. The semantics
are the same as for the corresponding higher-order call using the call/N syntax,
i.e. ‘call(Expr)’, ‘call(Expr, Arg1)’, etc.

promise_pure Goal

A purity cast. Goal must be a valid goal. This goal promises that Goal im-
plements a pure interface, even though it may include impure and semipure
components.

promise_semipure Goal

A purity cast. Goal must be a valid goal. This goal promises that Goal imple-
ments a semipure interface, even though it may include impure components.

promise_impure Goal

A purity cast. Goal must be a valid goal. This goal instructs the compiler to
treat Goal as though it were impure, regardless of its actual purity.

promise_equivalent_solutions Vars Goal

A determinism cast. Vars must be a list of variables. Goal must be a valid
goal. This goal promises that Vars is the set of variables bound by Goal, and
that while Goal may have more than one solution, all of these solutions are
equivalent with respect to the equality theories of the variables in Vars. It is
an error for Vars to include a variable not bound by Goal or for Goal to bind
a non-local variable that is not listed in Vars (non-local variables with inst any
are assumed to be further constrained by Goal and must also be included in
Vars). If Goal has determinism multi or cc_multi then promise_equivalent_

solutions Vars Goal has determinism det. If Goal has determinism nondet

or cc_nondet then promise_equivalent_solutions Vars Goal has determin-
ism semidet.

promise_equivalent_solution_sets Vars Goal

A determinism cast, of the kind performed by promise_equivalent_

solutions, on any goals of the form arbitrary ArbVars ArbGoal inside
Goal, of which there should be at least one. Vars and ArbVars must be lists of
variables, and Goal and ArbGoal must be valid goals. Vars must be the set of
variables bound by Goal, and ArbVars must be the set of variables bound by
ArbGoal, It is an error for Vars to include a variable not bound by Goal or for
Goal to bind a non-local variable that is not listed in Vars, and similarly for
ArbVars and ArbGoal. The intersection of Vars and the ArbVars list of any
arbitrary ArbVars ArbGoal goal included inside Goal must be empty.

The overall promise equivalent solution sets goal promises that the set of so-
lutions computed for Vars by Goal is not influenced by which of the possible
solutions for ArbVars is computed by each ArbGoal; while different choices of
solutions for some of the ArbGoals may lead to syntactically different solutions
for Vars for Goal, all of these solutions are equivalent with respect to the equal-
ity theories of the variables in Vars. If an ArbGoal has determinism multi or

Chapter 3: Semantics 21

cc_multi then arbitrary ArbVars ArbGoal has determinism det. If ArbGoal
has determinism nondet or cc_nondet then arbitrary ArbVars ArbGoal has
determinism semidet. Goal itself may have any determinism.

There is no requirement that given one of the ArbGoals, all its solutions must be
equivalent with respect to the equality theories of the corresponding ArbVars;
in fact, in typical usage, this won’t be the case. The different solutions of the
nested arbitrary goals are not required to be equivalent in any context except
the promise equivalent solution sets goal they are nested inside.

Goals of the form arbitrary ArbVars ArbGoal are not allowed to occur outside
promise_equivalent_solution_sets Vars Goal goals.

require_det Goal

require_semidet Goal

require_multi Goal

require_nondet Goal

require_cc_multi Goal

require_cc_nondet Goal

require_erroneous Goal

require_failure Goal

A determinism check, typically used to enhance the robustness of code. Goal
must be a valid goal. If Goal is det, then require_det Goal is equivalent to
just Goal. If Goal is not det, then the compiler is required to generate an error
message.

The require_det keyword may be replaced with require_semidet, require_
multi, require_nondet, require_cc_multi, require_cc_nondet, require_
erroneous or require_failure, each of which requires Goal to have the named
determinism.

require_complete_switch [Var] Goal

A switch completeness check, typically used to enhance the robustness of code.
If Goal is a switch on Var and the switch is complete, i.e. the switch has an arm
for every function symbol that Var could be bound to at this point in the code,
then require_complete_switch [Var] Goal is equivalent to Goal. If Goal is
a switch on Var but is not complete, or Goal is not a switch on Var at all, then
the compiler is required to generate an error message.

require_switch_arms_det [Var] Goal

require_switch_arms_semidet [Var] Goal

require_switch_arms_multi [Var] Goal

require_switch_arms_nondet [Var] Goal

require_switch_arms_cc_multi [Var] Goal

require_switch_arms_cc_nondet [Var] Goal

require_switch_arms_erroneous [Var] Goal

require_switch_arms_failure [Var] Goal

require_switch_arms_det is a determinism check, typically used to enhance
the robustness of code. Goal must be a valid goal. If Goal is a switch on
Var, and all arms of the switch would be allowable in a det context, require_
switch_arms_det [Var] Goal is equivalent to Goal. If Goal is not a switch on

Chapter 3: Semantics 22

Var, or if it is a switch on Var but some of its arms would not be allowable in
a det context, then the compiler is required to generate an error message.

The require_switch_arms_det keyword may be replaced with
require_switch_arms_semidet, require_switch_arms_multi,
require_switch_arms_nondet, require_switch_arms_cc_multi,
require_switch_arms_cc_nondet, require_switch_arms_erroneous or
require_switch_arms_failure, each of which requires the arms of the
switch on Var to have a determinism that is at least as tight as the named
determinism. The determinism match need not be exact; the requirement is
that the arms’ determinisms should make all the promises about the minimum
and maximum number of solutions as the named determinism does. For
example, it is ok to have a det switch arm in a require_switch_arms_semidet
scope, even though it would not be ok to have a det goal in a require_semidet
scope.

disable_warnings [Warning] Goal

disable_warning [Warning] Goal

The Mercury compiler can generate warnings about several kinds of constructs
that whose legal Mercury semantics is likely to differ from the semantics in-
tended by the programmer. While such warnings are useful most of the time,
they are a distraction in cases where the programmer’s intention does match
the legal semantics. Programmers can disable all warnings of a particular kind
for an entire module by compiling that module with the appropriate compiler
option, but in many cases this is not a good idea, since some of the warnings
it disables may not have been mistaken. This is what these goals are for. The
goal disable_warnings [Warning] Goal is equivalent to Goal in all respects,
with one exception: the Mercury compiler will not generate warnings of any of
the categories whose names appear in [Warning].

At the moment, the Mercury compiler supports the disabling of the following
warning categories:

singleton_vars

Disable the generation of singleton variable warnings.

suspected_occurs_check_failure

Disable the generation of warnings about code that looks like it
unifies a variable with a term that contains that same variable.

suspicious_recursion

Disable the generation of warnings about suspicious recursive calls.

no_solution_disjunct

Disable the generation of warnings about disjuncts that can have
no solution. This is usually done to shut up such a warning in
a multi-mode predicate where the disjunct in question is a switch
arm in another mode. (The difference is that a disjunct that can-
not succeed has no meaningful use, but a switch arm that cannot
succeed does have one: a switch may need that arm to make it
complete.)

Chapter 3: Semantics 23

unknown_format_calls

Disable the generation of warnings about calls to string.format,
io.format or stream.string_writer.format for which the com-
piler cannot tell whether there are any mismatches between the
format string and the supplied values.

The keyword starting this scope may be written either as disable_warnings or
as disable_warning. This is intended to make the code read more naturally
regardless of whether the list contains the name of more than one disabled
warning category.

trace Params Goal

A trace goal, typically used for debugging or logging. Goal must be a valid goal;
Params must be a valid list of trace parameters. Some trace parameters specify
compile time or run time conditions; if any of these conditions are false, Goal
will not be executed. Since in some program invocations Goal may be replaced
by ‘true’ in this way, Goal may not bind or change the instantiation state of
any variables it shares with the surrounding context. The things it may do
are thus restricted to side effects; good programming style requires these side
effects to not have any affect on the execution of the program itself, but to be
confined to the provision of extra information for the user of the program. See
Chapter 19 [Trace goals], page 156 for the details.

try Params Goal ... catch Expr -> CGoal ...

A try goal. Exceptions thrown during the execution of Goal may be caught
and handled. A summary of the try goal syntax is:

try Params Goal

then ThenGoal

else ElseGoal

catch Expr -> CatchGoal

...

catch_any CatchAnyVar -> CatchAnyGoal

See Chapter 14 [Exception handling], page 112 for the full details.

event Goal

An event goal. Goal must be a predicate call. Event goals are an extension
used by the Melbourne Mercury implementation to support user defined events
in the Mercury debugger, ‘mdb’. See the “Debugging” chapter of the Mercury
User’s Guide for further details.

Call Any goal which does not match any of the above forms is a predicate call. This
must be a functor term; the principal functor determines the predicate called,
which must be visible (see Chapter 10 [Modules], page 83). The arguments, if
present, must be valid expressions.

3.3 State variables

Clauses may use ‘state variables’ as a shorthand for naming intermediate values in a
sequence. That is, where in the plain syntax one might write

Chapter 3: Semantics 24

main(IO0, IO) :-

write_string("The answer is ", IO0, IO1),

write_int(calculate_answer(...), IO1, IO2),

nl(IO3, IO).

using state variable syntax one could write

main(!IO) :-

write_string("The answer is ", !IO),

write_int(calculate_answer(...), !IO),

nl(!IO).

A state variable is written ‘!.X ’ or ‘!:X ’, denoting the “current” or “next” value of the
sequence labelled X. An argument ‘!X ’ is shorthand for two state variable arguments ‘!.X,
!:X ’; that is, ‘p(..., !X, ...)’ is equivalent to ‘p(..., !.X, !:X, ...)’.

State variables obey special scope rules. A state variable X must be explicitly introduced,
and this can happen in one of four ways:

• As ‘!X ’ in the head of a clause. In this case, references to state variable ‘!X ’ or to its
components may appear in the clause.

• As either ‘!.X ’ or ‘!:X ’ or both in the head of a clause. Again, in this case, references
to state variable ‘!X ’ or to its components may appear in the clause.

• As either ‘!.X ’ or ‘!:X ’ or both in the head of a lambda expression. In this case,
references to state variable ‘!X ’ or to its components may appear in that lambda
expression. (The reason that ‘!X ’ may not appear as a parameter term in the head
of a lambda is that there is no syntax for specifying the modes of the two implied
parameters.)

• In an explicit quantification such as ‘some [!X] Goal ’. In this case, references to state
variable ‘!X ’ or to its components may appear in ‘Goal ’.

A state variable X in the enclosing scope of a lambda or if-then-else expression may only
be referred to as ‘!.X ’ (unless the enclosing X is shadowed by a more local state variable
of the same name.)

For instance, the following clause employs a lambda expression and is illegal because it
implicitly refers to ‘!:S ’ inside the lambda expression.

p(A, B, !S) :-

P = (pred(C::in, D::out) is det :-

q(C, D, !S)

),

(if P(A, E) then

B = E

else

B = A

).

However

p(A, B, !S) :-

P = (pred(C::in, D::out, !.S::in, !:S::out) is det :-

q(C, D, !S)

),

Chapter 3: Semantics 25

(if P(A, E, !S) then

B = E

else

B = A

).

is acceptable because the state variable S accessed inside the lambda expression is locally
scoped to the lambda expression (shadowing the state variable of the same name outside
the lambda expression), and the lambda expression may refer to the next version of a local
state variable.

There are two restrictions concerning state variables in functions, whether they are
defined by clauses or lambda expressions.

• ‘!X ’ is not a legal function result, because it stands for two arguments, rather than one.

• Neither ‘!X ’ nor ‘!:X ’ may appear as an argument in a function application, because
this would not make sense given the usual interpretation of state variables and func-
tions. (The default mode of functions is that all arguments are input, while in typical
usage, ‘!:X ’ is output.)

Within each clause, the compiler replaces each occurrence of !X in an argument list with
two arguments: !.X, !:X, where !.X represents the current version of the state of !X, and
!:X represents its next state. It then replaces all occurrences of !.X and !:X with ordinary
variables in way that (in the general case) represents a sequence of updates to the state of
X from an initial state to a final state.

This replacement is done by code that is equivalent to the ‘transform_goal’ and
‘transform_clause’ functions below. The basic operation used by these functions is
substitution: ‘substitute(Goal, [!.X -> CurX, !:X -> NextX])’ stands for a copy
of Goal in which every free occurrence of ‘!.X ’ is replaced with CurX, and every free
occurrence of ‘!:X ’ is replaced with NextX. (A free occurrence is one not bound by the
head of a clause or lambda, or by an explicit quantification.)

The ‘transform_goal(Goal, X, CurX, NextX)’ function’s inputs are

• the goal to transform Goal,

• the name of the state variable X,

• and the ordinary variables CurX and NextX representing the current and next versions
of that state variable.

It returns a transformed version of Goal.

‘transform_goal’ has a case for each kind of Mercury goal. These cases are as follows.

Calls Given a first order call such as ‘predname(Arg1, ..., ArgN)’ or a higher-
order call such as ‘Expr(Arg1, ..., ArgN)’, if any of the arguments is !X,
‘transform_goal’ replaces that argument with two arguments: !.X and !:X. It
then checks whether ‘!:X ’ appears in the updated Call.

• If it does, then it replaces Call with

substitute(Call, [!.X -> CurX, !:X -> NextX])

• If it does not, then it replaces Call with

substitute(Call, [!.X -> CurX]),

NextX = CurX

Chapter 3: Semantics 26

Note that !.X can occur in Call on its own (i.e. without !:X). Likewise, !:X can
occur in Call without !.X, but this does not need separate handling.

The expression Expr in a higher-order call may not be of the form !X, !.X or
!:X. It may be parenthesised as (!.X), however.

Unifications

In a unification ‘ExprA = ExprB ’, each of ExprA and ExprB are expressions
that may have one of the following four forms:

• The expression may be !.S for some state variable S. If S is X, then
‘transform_goal’ replaces the expression with CurX.

• The expression may be !:S for some state variable S. If S is X, then
‘transform_goal’ replaces the expression with NextX.

• The expression may be a name, a constant, or a variable that is not a state
variable, ‘transform_goal’ leaves such expressions unchanged.

• The expression may be a compound term, which means that it must
have the form ‘f(ArgTerm1, ..., ArgTermN)’. ‘transform_goal’ handles
these the same way it handles function applications.

Note that ExprA and ExprB may not have the form !S.

State variable field updates

A state variable field update goal has the form

!S ^ field_list := Expr

where field list is a valid field list See [Field access expressions], page 34. This
means that

!S ^ field1 := Expr

!S ^ field1 ^ field2 := Expr

!S ^ field1 ^ field2 ^ field3 := Expr

are all valid field update goals. If S is X, ‘transform_goal’ replaces such goals
with

NextX = CurX ^ field_list := Expr

Otherwise, it leaves the goal unchanged.

Conjunctions

Given a nonempty conjunction, whether a sequential conjunction such as Goal1,
Goal2 or a parallel conjunction such as Goal1 & Goal2, ‘transform_goal’

• creates a fresh variable MidX,

• replaces Goal1 with

substitute(Goal1, [!.X -> CurX, !:X -> MidX])

• replaces Goal2 with

substitute(Goal2, [!.X -> MidX, !:X -> NextX])

This implies that first Goal1 updates the state of X from CurX to MidX, and
then Goal2 updates the state of X from MidX to NextX.

Given the empty conjunction, i.e. the goal ‘true’, ‘transform_goal’ will re-
place it with

Chapter 3: Semantics 27

NextX = CurX

Disjunctions

Given a disjunction such as Goal1 ; Goal2, ‘transform_goal’

• replaces Goal1 with

substitute(Goal1, [!.X -> CurX, !:X -> NextX])

• replaces Goal2 with

substitute(Goal2, [!.X -> CurX, !:X -> NextX])

This shows that both disjuncts start with the CurX, and both end with NextX.
If a disjunct has no update of !X, then the value of NextX in that disjunct will
be set to CurX.

The empty disjunction, i.e. the goal ‘fail’, cannot succeed, so what the value
of !:X would be if it did succeed is moot. Therefore ‘transform_goal’ returns
empty disjunctions unchanged.

Negations

Given a negated goal of the form ‘not NegatedGoal ’, ‘transform_goal’

• creates a fresh variable DummyX, and then

• replaces ‘not NegatedGoal ’ with

‘not’ substitute(‘NegatedGoal’, [!.X -> CurX, !:X -> Dum-

myX]),

NextX = CurX

It does this because negated goals may not generate any outputs visible from
the rest of the code, which means that any output they do generate must be
local to the negated goal.

Negations that use ‘\+ NegatedGoal ’ notation are handled exactly the same
way,

If-then-elses

Given an if-then-else, whether it uses (if Cond then Then else Else) syntax or
(Cond -> Then ; Else) syntax, ‘transform_goal’

• creates a fresh variable MidX,

• replaces Cond with

substitute(Cond, [!.X -> CurX, !:X -> MidX])

• replaces Then with

substitute(Then, [!.X -> MidX, !:X -> NextX])

• replaces Else with

substitute(Else, [!.X -> CurX, !:X -> NextX])

This effectively treats an if-then-else as being a disjunction, with the first dis-
junct being the conjunction of the Cond and Then goals, and the second disjunct
being the Else goal. (The Else goal is implicitly conjoined inside the second
disjunct with the negation of the existential closure of Cond, since the else case
is executed only if the condition has no solution.)

Chapter 3: Semantics 28

Bidirectional implications

‘transform_goal’ treats a bidirectional implication goal, which has the form
GoalA <=> GoalB, as it were the conjunction of its two constituent unidirec-
tional implications: GoalA => GoalB, GoalA <= GoalB.

Unidirectional implications

‘transform_goal’ treats a unidirectional implication, which has one of the two
forms ‘GoalA => GoalB ’ and ‘GoalB <= GoalA ’, as if they were written as ‘not
(GoalA, not GoalB)’.

Universal quantifications

‘transform_goal’ treats universal quantifications, which have the form ‘all
Vars SubGoal ’ as if they were written as ‘not (some Vars (not SubGoal))’.
Note that in universal quantifications, Vars must a list of ordinary variables.

Existential quantifications

In existential quantifications, which have the form ‘some Vars SubGoal ’, Vars
must be a list, in which every element must be either ordinary variable (such
as A), or a state variable (such as !B). (Note that Vars may not contain any
element whose form is !.B or !:B.)

• If Vars does not contain !X, then ‘transform_goal’ will replace SubGoal
with

substitute(SubGoal, [!.X -> CurX, !:X -> NextX])

• If Vars does contain !X, then ‘transform_goal’ will leave SubGoal un-
changed, because any references to !.X, !:X and !X inside SubGoal refer to
the state variable X introduced by this scope, not the one visible outside.
Effectively, this state variable X shadows the one visible outside.

Note that state variables in Vars are handled by ‘transform_clause’ below.

The ‘transform_clause’ function’s input is a clause, which may be a non-DCG clause
or a DCG clause, which have the forms

predname(ArgTerm1, ..., ArgTermN) :- BodyGoal.

and

predname(ArgTerm1, ..., ArgTermN) --> BodyGoal.

respectively. ‘transform_clause’ handles both the same way.

• While any of the ArgTerms has one of the forms !.X, !:X and !X,

• ‘transform_clause’ will create two fresh variables, InitX and FinalX,

• it will replace any one of the ArgTerms that is !.X with InitX, any one of the
ArgTerms that is !:X with FinalX, and any one of the ArgTerms that is !X with
the argument pair InitX, FinalX, and

• it will replace BodyGoal with the result of ‘transform_goal(BodyGoal, X,

InitX, FinalX)’.

• While BodyGoal contains a lambda expression whose argument list contains either !.X
or !:X or both:

• ‘transform_clause’ will create two fresh variables, InitX and FinalX,

Chapter 3: Semantics 29

• it will replace any one of the arguments that is !.X with InitX, and any one of the
arguments that is !:X with FinalX (there may not be any argument that is !X),
and

• it will replace the lambda goal BodyGoal with the result of ‘transform_goal(BodyGoal,
X, InitX, FinalX)’.

• While BodyGoal contains an existential quantification goal ‘some Vars SubGoal ’ where
Vars contains a state variable such as !B,

• ‘transform_clause’ will create two fresh variables, InitB and FinalB,

• it will replace SubGoal with the result of ‘transform_goal(SubGoal, B, InitB,

FinalB)’, and then

• it will delete !B from Vars.

Actual application of this transformation would, in the general case, result in the gener-
ation of many different versions of each state variable, for which we need more names than
just ‘CurX ’, ‘TmpX ’ and ‘NextX ’. The Mercury compiler therefore uses

• ‘STATE_VARIABLE_X_0 ’ as the initial value of a state variable,

• ‘STATE_VARIABLE_X_N ’, where ‘N ’ is a nonzero positive integer, as its intermediate
values, and

• ‘STATE_VARIABLE_X ’ as its final value.

This transformation can lead to the introduction of chains of unifica-
tions for variables that do not otherwise play a role in the definition, such
as ‘STATE_VARIABLE_X_5 = STATE_VARIABLE_X_6, STATE_VARIABLE_X_6 =

STATE_VARIABLE_X_7, STATE_VARIABLE_X_7 = STATE_VARIABLE_X_8 ’. Where
possible, the compiler automatically shortcircuits such sequences by removing any
unneeded intermediate variables. In the above case, this would yield ‘STATE_VARIABLE_X_5
= STATE_VARIABLE_X_8 ’.

The following code fragments illustrate some appropriate uses of state variable syntax.

Threading the I/O state
main(!IO) :-

io.write_string("The 100th prime is ", !IO),

X = prime(100),

io.write_int(X, !IO),

io.nl(!IO).

Handling accumulators (1)
foldl2(_, [], !A, !B).

foldl2(P, [X | Xs], !A, !B) :-

P(X, !A, !B),

foldl2(P, Xs, !A, !B).

Handling accumulators (2)
iterate_while2(Test, Update, !A, !B) :-

(if Test(!.A, !.B) then

Update(!A, !B),

iterate_while2(Test, Update, !A, !B)

else

Chapter 3: Semantics 30

true

).

Introducing state
compute_out(InA, InB, InsC, Out) :-

some [!State]

(

init_state(!:State),

update_state_a(InA, !State),

update_state_b(InB, !State),

list.foldl(update_state_c, InC, !State),

compute_output(!.State, Out)

).

3.4 DCG-goals

A DCG-goal is a term of one of the following forms:

some Vars DCG-goal

A DCG existential quantification. Vars must be a list of variables. DCG-goal
must be a valid DCG-goal.

Semantics:

transform(V_in, V_out, some Vars DCG_goal) =

some Vars transform(V_in, V_out, DCG_goal)

all Vars DCG-goal

A DCG universal quantification. Vars must be a list of variables. DCG-goal
must be a valid DCG-goal.

Semantics:

transform(V_in, V_out, all Vars DCG_goal) =

all Vars transform(V_in, V_out, DCG_goal)

DCG-goal1, DCG-goal2

A DCG sequence. Intuitively, this means “parse DCG-goal1 and then parse
DCG-goal2” or “do DCG-goal1 and then do DCG-goal2”. (Note that the only
way this construct actually forces the desired sequencing is by the modes of the
implicit DCG arguments.) DCG-goal1 and DCG-goal2 must be valid DCG-
goals.

Semantics:

transform(V_in, V_out, (DCG-goal1, DCG-goal2)) =

(transform(V_in, V_new, DCG_goal1), transform(V_new, V_out, DCG_goal2))

where V new is a fresh variable.

DCG-goal1 ; DCG-goal2

A disjunction. DCG-goal1 and DCG-goal2 must be valid goals. DCG-goal1
must not be of the form ‘DCG-goal1a -> DCG-goal1b’. (If it is, then the goal
is an if-then-else, not a disjunction.)

Semantics:

Chapter 3: Semantics 31

transform(V_in, V_out, (DCG_goal1 ; DCG_goal2)) =

(transform(V_in, V_out, DCG_goal1)

; transform(V_in, V_out, DCG_goal2)

)

{ Goal } A brace-enclosed ordinary goal. Goal must be a valid goal.

Semantics:

transform(V_in, V_out, { Goal }) = (Goal, V_out = V_in)

[Term, ...]

A DCG input match. Unifies the implicit DCG input variable V in, which must
have type ‘list(_)’, with a list whose initial elements are the terms specified
and whose tail is the implicit DCG output variable V out. The terms must be
valid expressions.

Semantics:

transform(V_in, V_out, [Term1, ...]) = (V_in = [Term, ... | V_Out])

[] The null DCG goal (an empty DCG input match). Equivalent to ‘{ true }’.

Semantics:

transform(V_in, V_out, []) = (V_out = V_in)

not DCG-goal

\+ DCG-goal

A DCG negation. The two different syntaxes have identical semantics. Goal
must be a valid goal.

Semantics:

transform(V_in, V_out, not DCG_goal) =

(not transform(V_in, V_new, DCG_goal), V_out = V_in)

where V new is a fresh variable.

if CondGoal then ThenGoal else ElseGoal

CondGoal -> ThenGoal ; ElseGoal

A DCG if-then-else. The two different syntaxes have identical semantics. Cond-
Goal, ThenGoal, and ElseGoal must be valid DCG-goals.

Semantics:

transform(V_in, V_out, if CondGoal then ThenGoal else ElseGoal) =

if transform(V_in, V_cond, CondGoal) then

transform(V_cond, V_out, ThenGoal)

else

transform(V_in, V_out, ElseGoal)

=(Term) A DCG unification. Unifies Term with the implicit DCG argument. Term must
be a valid expression.

Semantics:

transform(V_in, V_out, =(Term)) = (Term = V_in, V_out = V_in)

:=(Term) A DCG output unification. Unifies Term with the implicit DCG output argu-
ment, ignoring the input DCG argument. Term must be a valid expression.

Semantics:

Chapter 3: Semantics 32

transform(V_in, V_out, :=(Term)) = (V_out = Term)

Term =^ field_list

A DCG field selection. Unifies Term with the result of applying the field selec-
tion field list to the implicit DCG argument. Term must be a valid expression.
field list must be a valid field list. See [Field access expressions], page 34.

Semantics:

transform(V_in, V_out, Term =^ field_list) =

(Term = V_in ^ field_list, V_out = V_in)

^ field_list := Term

A DCG field update. Replaces a field in the implicit DCG argument. Term
must be a valid expression. field list must be a valid field list. See [Field access
expressions], page 34.

Semantics:

transform(V_in, V_out, ^ field_list := Term) =

(V_out = V_in ^ field_list := Term)

DCG-call Any term which does not match any of the above forms must be a DCG pred-
icate call. If the term is a variable Var, it is treated as if it were ‘call(Var)’.
Then, the two implicit DCG arguments are appended to the specified argu-
ments.

Semantics:

transform(V_in, V_out, p(A1, ..., AN)) =

p(A1, ..., AN, V_in, V_out)

3.5 Expressions

Syntactically, an expression is just a term. Semantically, an expression is a variable, a
literal, a functor expression, or a special expression. A special expression is a conditional
expression, a unification expression, an explicit type qualification, a type conversion ex-
pression, a lambda expression, an apply expression, or a field access expression. Note that
many terms are interpreted as expressions by Mercury in the same way as in Prolog. Spe-
cial expressions, however, extend the functionality of Prolog. Both special and non-special
expressions are covered in this section.

A literal is an integer, a float, a string, or an implementation-defined literal (note that
character literals are a kind of atom; see below).

Implementation-defined literals are symbolic names whose value represents a property
of the compilation environment or the context in which it appears. The implementation
replaces these symbolic names with actual constants during compilation. Implementation-
defined literals can only appear within clauses. The following must be supported by all
Mercury implementations:

‘$file’ A string that gives the name of the file that contains the module being compiled.
If the name of the file cannot be determined, then it is replaced by an arbitrary
string.

‘$line’ The line number (integer) of the goal in which the literal appears, or -1 if it
cannot be determined.

Chapter 3: Semantics 33

‘$module’ A string representation of the fully qualified module name.

‘$pred’ A string containing the fully qualified predicate or function name and arity.

The Melbourne Mercury implementation additionally supports the following extension:

‘$grade’ The grade (string) in which the module is compiled.

A functor expression is an atom, which is just a name, or a compound expression, which
is a compound term that does not match the form of a special expression, and whose
arguments are expressions. If a functor expression is not a character literal, its principal
functor must be the name of a visible function, predicate, or data constructor (except for
field specifiers, for which the corresponding field access function must be visible; see below).

Character literals in Mercury are just atoms with a single character, possibly quoted.
Since they sometimes require quotes and sometimes require parentheses, for code consis-
tency we recommend writing all character literals with quotes and (except where used as
arguments) parentheses. For example, Char = (’+’) ; Char = (’’’’).

Special expressions (not including field access expressions, which are covered below) take
one of the following forms.

if Goal then ThenExpr else ElseExpr

Goal -> ThenExpr ; ElseExpr

A conditional expression. Goal is a goal; ThenExpr and ElseExpr are both
expressions. The two forms are equivalent. The meaning of a conditional ex-
pression is that if Goal is true it is equivalent to ThenExpr, otherwise it is
equivalent to ElseExpr.

If Goal takes the form some [X, Y, Z] ... then the scope of X, Y, and Z
includes ThenExpr. See the related discussion regarding if-then-else goals.

X @ Y A unification expression. X and Y are both expressions. The meaning of a
unification expression is that the arguments are unified, and the expression is
equivalent to the unified value.

The strict sequential operational semantics (see Chapter 15 [Formal semantics],
page 115) of an expression X @ Y is that the expression is replaced by a fresh
variable Z, and immediately after Z is evaluated, the conjunction Z = X, Z = Y

is evaluated.

For example

p(X @ f(_, _), X).

is equivalent to

p(Z, X) :-

Z = X,

Z = f(_, _).

Unification expressions are particularly useful when writing switches (see Sec-
tion 7.2 [Determinism checking and inference], page 65), as the arguments of a
unification expression are examined when checking for switches. The arguments
of an equivalent user-defined function would not be.

Expr : Type

An explicit type qualification. Expr must be a valid expression, and Type
must be a valid type (see Chapter 4 [Types], page 38). These expressions are

Chapter 3: Semantics 34

occasionally useful to resolve ambiguities that can arise from overloading or
polymorphic types.

An explicit type qualification constrains the specified expression to have the
specified type. Apart from that, the explicit type qualification is equivalent to
Expr.

Currently we also support Expr ‘with_type‘ Type as an alternative syntax for
explicit type qualification.

coerce(Expr)

A type conversion expression. Expr must be a valid expression. See Chapter 13
[Type conversions], page 109.

pred(Arg1::Mode1, Arg2::Mode2, ...) is Det :- Goal

pred(Arg1::Mode1, Arg2::Mode2, ..., DCGMode0, DCGMode1) is Det --> DCGGoal

func(Arg1::Mode1, Arg2::Mode2, ...) = (Result::Mode) is Det :- Goal

func(Arg1, Arg2, ...) = (Result) is Det :- Goal

func(Arg1, Arg2, ...) = Result :- Goal

A lambda expression. Arg1, Arg2, . . . are zero or more expressions, Result is
an expression, Goal is a goal, DCGGoal is a DCG-goal, Mode1, Mode2, . . . ,
DCGMode0, and DCGMode1 are modes (see Chapter 5 [Modes], page 54), and
Det is a determinism category (see Chapter 7 [Determinism], page 64). The
‘:- Goal’ part is optional; if it is not specified, then ‘:- true’ is assumed.

A lambda expression denotes a higher-order predicate or function term whose
value is the predicate or function of the specified arguments determined by the
specified goal. See Chapter 9 [Higher-order], page 76.

A lambda expression introduces a new scope: any variables occurring in the
arguments Arg1, Arg2, . . . are locally quantified, i.e. they are distinct from
other variables with the same name that occur outside of the lambda expression.
For variables which occur in Result or Goal, but not in the arguments, the
usual Mercury rules for implicit quantification apply (see Section 3.7 [Implicit
quantification], page 36).

The form of lambda expression using ‘-->’ as its top level functor is a syntactic
abbreviation. It is equivalent to

pred(Var1::Mode1, Var2::Mode2, ...,

DCGVar0::DCGMode0, DCGVar1::DCGMode1) is Det :- Goal

where DCGVar0 and DCGVar1 are fresh variables, and Goal is
transform(DCGVar0, DCGVar1, DCGGoal) where transform is the
function specified in Section 3.4 [DCG-goals], page 30.

apply(Func, Arg1, Arg2, ..., ArgN)

Func(Arg1, Arg2, ..., ArgN)

An apply expression (i.e. a higher-order function call). N >= 0, Func is an
expression of type ‘func(T1, T2, ..., Tn) = T’, and Arg1, Arg2, . . . , ArgN
are expressions of types ‘T1’, ‘T2’, . . . , ‘Tn’. The type of the apply expression
is T. It denotes the result of applying the specified function to the specified
arguments. See Chapter 9 [Higher-order], page 76.

Chapter 3: Semantics 35

Field access expressions

Field access expressions provide a convenient way to select or update fields of data con-
structors, independent of the definition of the constructor. Field access expressions are
transformed into sequences of calls to field selection or update functions (see Section 4.4
[Field access functions], page 49).

A field specifier is a functor expression. A field list is a sequence of field specifiers
separated by ^ (circumflex). E.g., ‘field’, ‘field1 ^ field2’ and ‘field1(A) ^ field2(B,

C)’ are all valid field lists.

If the principal functor of a field specifier is field/N, there must be a visible selection
function field/(N + 1). If the field specifier occurs in a field update expression, there must
also be a visible update function named ’field :=’/(N + 2).

Field access expressions have one of the following forms. There are also DCG goals for
field access (see Section 3.4 [DCG-goals], page 30), which provide similar functionality to
field access expressions, except that they act on the DCG arguments of a DCG clause.

Expr ^ field_list

A field selection. For each field specifier in field list, apply the corresponding
selection function in turn.

Expr must be a valid expression. field list must be a valid field list.

A field selection is transformed using the following rules:

transform(Expr ^ Field(Arg1, ...)) = Field(Arg1, ..., Expr).

transform(Expr ^ Field(Arg1, ...) ^ Rest) =

transform(Field(Arg1, ..., Expr) ^ Rest).

Examples:

Expr ^ field is equivalent to field(Expr).

Expr ^ field(Arg) is equivalent to field(Arg, Expr).

Expr ^ field1(Arg1) ^ field2(Arg2, Arg3) is equivalent to
field2(Arg2, Arg3, field1(Arg1, Expr)).

Expr ^ field_list := FieldExpr

A field update, returning a copy of Expr with the value of the field specified by
field list replaced with FieldExpr.

Expr and FieldExpr must be valid expressions. field list must be a valid field
list.

A field update is transformed using the following rules:

transform(Expr ^ Field(Arg1, ...) := FieldExpr) =

’Field :=’(Arg1, ..., Expr, FieldExpr)).

transform(Expr0 ^ Field(Arg1, ...) ^ Rest := FieldExpr) = Expr :-

OldFieldValue = Field(Arg1, ..., Expr0),

NewFieldValue = transform(OldFieldValue ^ Rest := FieldExpr),

Expr = ’Field :=’(Arg1, ..., Expr0, NewFieldValue).

Examples:

Expr ^ field := FieldExpr is equivalent to ’field :=’(Expr, FieldExpr).

Chapter 3: Semantics 36

Expr ^ field(Arg) := FieldExpr is equivalent to ’field :=’(Arg, Expr, FieldExpr).

Expr ^ field1(Arg1) ^ field2(Arg2) := FieldExpr is equivalent to the code

OldField1 = field1(Arg1, Expr),

NewField1 = ’field2 :=’(Arg2, OldField1, FieldExpr),

Result = ’field1 :=’(Arg1, Expr, NewField1)

3.6 Variable scoping

There are three sorts of variables in Mercury: ordinary variables, type variables, and inst
variables.

Variables occurring in types are called type variables. Variables occurring in insts or
modes are called inst variables. Variables that occur in expressions, and that are not inst
variables or type variables, are called ordinary variables.

Note that type variables can occur in expressions in the right-hand (Type) operand of
an explicit type qualification. Inst variables can occur in expressions in the right-hand
(Mode) operand of an explicit mode qualification. Apart from that, all other variables in
expressions are ordinary variables.

The three different variable sorts occupy different namespaces: there is no semantic
relationship between two variables of different sorts (e.g. a type variable and an ordinary
variable) even if they happen to share the same name. However, as a matter of programming
style, it is generally a bad idea to use the same name for variables of different sorts in the
same clause.

The scope of ordinary variables is the clause or declaration in which they occur, unless
they are quantified, either explicitly (see Section 3.2 [Goals], page 18) or implicitly (see
Section 3.7 [Implicit quantification], page 36).

The scope of type variables in a predicate or function’s type declaration extends over any
explicit type qualifications (see Section 3.5 [Expressions], page 32) in the clauses for that
predicate or function, and over ‘pragma type_spec’ (see Section 20.2 [Type specialization],
page 159) declarations for that predicate or function, so that explicit type qualifications and
‘pragma type_spec’ declarations can refer to those type variables. The scope of any type
variables in an explicit type qualification which do not occur in the predicate or function’s
type declaration is the clause in which they occur.

The scope of inst variables is the clause or declaration in which they occur.

3.7 Implicit quantification

The rule for implicit quantification in Mercury is not the same as the usual one in math-
ematical logic. In Mercury, variables that do not occur in the head term of a clause are
implicitly existentially quantified around their closest enclosing scope (in a sense to be made
precise in the following paragraphs). This allows most existential quantifiers to be omitted,
and leads to more concise code.

An occurrence of a variable is in a negated context if it is in a negation, in a universal
quantification, in the condition of an if-then-else, in an inequality, or in a lambda expression.

Two goals are parallel if they are different disjuncts of the same disjunction, or if one is
the “else” part of an if-then-else and the other goal is either the “then” part or the condition

Chapter 3: Semantics 37

of the if-then-else, or if they are the goals of disjoint (distinct and non-overlapping) lambda
expressions.

If a variable occurs in a negated context and does not occur outside of that negated
context other than in parallel goals (and in the case of a variable in the condition of an
if-then-else, other than in the “then” part of the if-then-else), then that variable is implicitly
existentially quantified inside the negated context.

3.8 Elimination of double negation

The treatment of inequality, universal quantification, implication, and logical equivalence
as abbreviations can cause the introduction of double negations which could make other-
wise well-formed code mode-incorrect. To avoid this problem, the language specifies that
after syntax analysis and implicit quantification, and before mode analysis is performed, the
implementation must delete any double negations and must replace any negations of con-
junctions of negations with disjunctions. (Both of these transformations preserve the logical
meaning and type-correctness of the code, and they preserve or improve mode-correctness:
they never transform code fragments that would be well-moded into ones that would be
ill-moded. See Chapter 5 [Modes], page 54.)

Chapter 4: Types 38

4 Types

The type system is based on many-sorted logic, and supports polymorphism, type classes
(see Chapter 11 [Type classes], page 91), and existentially quantified types (see Chapter 12
[Existential types], page 101).

4.1 Builtin types

This section describes the special types that are built into the Mercury implementation, or
are defined in the standard library.

4.1.1 Primitive types

There is a special syntax for constants of all primitive types except char. (For char, the
standard syntax suffixes.)

4.1.1.1 Signed integer types

There are five primitive signed integer types: int, int8, int16, int32 and int64.

Except for int, the width in bits of each of these is given by the numeric suffix in its
name.

The width in bits of int is implementation defined, but must be at least 32-bits.

All signed integer types use two’s-complement representation. Their width must be equal
to the width of the corresponding unsigned type.

Values of the type int8 must be in the range −128 (−(28−1)) to 127 (28−1 − 1), both
inclusive.

Values of the type int16 must be in the range −32768 (−(216−1)) to 32767 (216−1 − 1),
both inclusive.

Values of the type int32 must be in the range −2147483648 (−(232−1)) to 2147483647
(232−1 − 1), both inclusive.

Values of the type int64 must be in the range −9223372036854775808 (−(264−1)) to
9223372036854775807 (264−1 − 1), both inclusive.

Values of the type int must be in the range to −(2N−1) to 2N−1 − 1, both inclusive; N
being the width of int in bits.

4.1.1.2 Unsigned integer types

There are five primitive unsigned integer types: uint, uint8, uint16, uint32 and uint64.

Except for uint, the width in bits of each of these is given by the numeric suffix in its
name.

The width in bits of uint is implementation defined, but must be at least 32-bits. It
must be equal to the width of the type int.

Values of the type uint8 must be in the range 0 (20 − 1) to 255 (28 − 1), both inclusive.

Values of the type uint16 must be in the range 0 (20 − 1) to 65535 (216 − 1), both
inclusive.

Values of the type uint32 must be in the range 0 (20 − 1) to 4294967295 (232− 1), both
inclusive.

Chapter 4: Types 39

Values of the type uint64 must be in the range 0 (20 − 1) to 18446744073709551615
(264− 1), both inclusive.

Values of the type uint must be in the range 0 (20 − 1) to 2N − 1, both inclusive; N
being the width of uint in bits.

4.1.1.3 Floating-point type

There is one floating-point type: float.

It is represented using either the 32-bit single-precision IEEE 754 format or the 64-bit
double-precision IEEE 754 format.

The choice between the two formats is implementation dependent.

In the Melbourne Mercury implementation, floats are represented using the 32-bit
single-precision IEEE 754 format in grades that have .spf grade component, and using the
64-bit double-precision IEEE 754 format in every other grade.

4.1.1.4 Character type

There is one character type: char.

Values of this type represent Unicode code points.

4.1.1.5 String type

There is one string type: string.

A string is a sequence of characters encoded using either the UTF-8 or UTF-16 encoding
of Unicode.

The choice between the two encodings is implementation dependent.

In the Melbourne Mercury implementation, strings are represented using UTF-8 when
generating code for C, and using UTF-16 when generating code for C# or Java.

4.1.2 Other builtin types

4.1.2.1 Predicate and function types

The predicate types are pred, pred(T), pred(T1, T2), . . .

The function types are (func) = T, func(T1) = T, func(T1, T2) = T, . . .

Higher-order predicate and function types are used to pass closures to other predicates
and functions. See Chapter 9 [Higher-order], page 76.

4.1.2.2 Tuple types

The tuple types are {}, {T}, {T1, T2}, . . .

A tuple type is equivalent to a discriminated union type (see Section 4.2.1 [Discriminated
unions], page 40) with declaration

:- type {Arg1, Arg2, ..., ArgN}

---> { {Arg1, Arg2, ..., ArgN} }.

Chapter 4: Types 40

4.1.2.3 The universal type

The type univ is defined in the standard library module univ, along with the predicates
type_to_univ/2 and univ_to_type/2. With those predicates, values of any type can be
converted to the universal type, and back again. The conversion from univ to the original
type will check that the value inside the univ has the expected type. The universal type is
useful for situations where you need heterogeneous collections.

4.1.2.4 The “state-of-the-world” type

The type io.state is defined in the standard library module io, and represents the state
of the world. Predicates which perform I/O are passed the only reference to the current
state of the world, and produce a unique reference to the new state of the world. In this
way, we can give a declarative semantics to code that performs I/O.

4.2 User-defined types

New types can be introduced with ‘:- type’ declarations. There are several categories of
derived types:

4.2.1 Discriminated unions

These encompass both enumeration and record types in other languages. A derived type
is defined using ‘:- type type ---> body ’. (Note there are three dashes in that arrow. It
should not be confused with the two-dash arrow used for DCGs or the one-dash arrow used
for if-then-else.) If the type term is a functor of arity zero (i.e. one having zero arguments),
it names a monomorphic type. Otherwise, it names a polymorphic type; the arguments
of the functor must be distinct type variables. The body term is defined as a sequence of
constructor definitions separated by semicolons.

Ordinarily, each constructor definition must be a functor whose arguments (if any) are
types. Ordinary discriminated union definitions must be transparent: all type variables
occurring in the body must also occur in the type. (The reverse is not the case: a variable
occurring in the type need not also occur in the body. Such variables are called ‘phantom
type parameters’, and their use is explained below.)

However, constructor definitions can optionally be existentially typed. In that case, the
functor will be preceded by an existential type quantifier and can optionally be followed by
an existential type class constraint. For details, see Chapter 12 [Existential types], page 101.
Existentially typed discriminated union definitions need not be transparent.

The arguments of constructor definitions may be labelled. These labels cause the com-
piler to generate functions which can be used to conveniently select and update fields of a
term in a manner independent of the definition of the type (see Section 4.4 [Field access
functions], page 49). A labelled argument has the form fieldname :: Type . It is an error
for two fields in the same type to have the same label.

Here are some examples of discriminated union definitions:

:- type fruit

---> apple

; orange

; banana

; pear.

Chapter 4: Types 41

:- type strange

---> foo(int)

; bar(string).

:- type employee

---> employee(

name :: string,

age :: int,

department :: string

).

:- type tree

---> empty

; leaf(int)

; branch(tree, tree).

:- type list(T)

---> []

; [T | list(T)].

:- type pair(T1, T2)

---> T1 - T2.

If the body of a discriminated union type definition contains a term whose top-level
functor is ’;’/2, the semicolon is normally assumed to be a separator. This makes it
difficult to define a type whose constructors include ’;’/2. To allow this, curly braces
can be used to quote the semicolon. It is then also necessary to quote curly braces. The
following example illustrates this:

:- type tricky

---> { int ; int }

; { { int } }.

This defines a type with two constructors, ’;’/2 and ’{}’/1, whose argument types are
all int. We recommend against using constructors named ’{}’ because of the possibility
of confusion with the builtin tuple types.

Each discriminated union type definition introduces a distinct type. Mercury considers
two discriminated union types that have the same bodies to be distinct types (name equiv-
alence). Having two different definitions of a type with the same name and arity in the
same module is an error.

Constructors may be overloaded among different types: there may be any number of
constructors with a given name and arity, so long as they all have different types. However,
there must not be more than one constructor with the same name, arity, and result type in
the same module. (There is no particularly good reason for this restriction; in the future
we may allow several such functors as long as they have different argument types.) Note
that excessive overloading of constructors can slow down type checking and can make the
program confusing for human readers, so overloading should not be over-used.

Chapter 4: Types 42

Note that user defined types may not have names that have meanings in Mercury. (Most
of these are documented in later sections.)

The list of reserved type names is

int

int8

int16

int32

int64

uint

uint8

uint16

uint32

uint64

float

character

string

{}

=

=<

pred

func

pure

semipure

impure

’’

Phantom type parameters are useful when you have two distinct concepts that you want
to keep separate, but for which nevertheless you want to use the representation. This is an
example of their use, taken from the Mercury compiler:

:- type var(T)

---> ...

:- type prog_var == var(prog_var_type).

:- type type_var == var(type_var_type).

:- type prog_var_type

---> prog_var_type.

:- type type_var_type

---> type_var_type.

The var type represents the generic notion of a variable. It has a phantom type parame-
ter, T, which does not occur in the body of its type definition. The prog_var and type_var

types represent two different specific kinds of variables: program variables, which occur in
code (clauses), and type variables, which occur in types, respectively. They each bind a
different type to the type parameter T. These types, prog_var_type and type_var_type,
each have a single function symbol of arity zero. This means that each type has only one
value, which in turn means that values of these types contain no information at all. But
containing information is not the purpose of these types. Their purpose is to ensure that if

Chapter 4: Types 43

ever a computation that expects program variables is ever accidentally given type variables,
or vice versa, this mismatch is detected and reported by the compiler. Two variables can
be unified only if they have the same type. While two prog_vars have the same type, and
two type_vars have the same type, a prog_var and type_var have different types, due to
having different types (prog_var_type and type_var_type) being bound to the phantom
type parameter T.

4.2.2 Equivalence types

These are type abbreviations. They are defined using ‘==’ as follows. They may be poly-
morphic.

:- type money == int.

:- type assoc_list(KeyType, ValueType)

== list(pair(KeyType, ValueType)).

Equivalence type definitions must be transparent. Unlike discriminated union type def-
initions, equivalence type definitions must not be cyclic; that is, the type on the left hand
side of the ‘==’ (‘assoc_list’ and ‘money’ in the examples above) must not occur on the
right hand side of the ‘==’.

Mercury treats an equivalence type as an abbreviation for the type on the right hand
side of the definition; the two are equivalent in all respects in scopes where the equivalence
type is visible.

4.2.3 Abstract types

These are types whose implementation is hidden. The type declarations

:- type t1.

:- type t2(T1, T2).

declare types t1/0 and t2/2 to be abstract types. Such declarations are only useful in the
interface section of a module. This means that the type names will be exported, but the
constructors (functors) for these types will not be exported. The implementation section of
a module must give a definition for all of the abstract types named in the interface section
of the module. Abstract types may be defined as either discriminated union types or as
equivalence types.

4.2.4 Subtypes

(This is a new and experimental feature, subject to change.)

A subtype is a discriminated union type that is a subset of a supertype, in that ev-
ery term of a subtype is a valid term in the supertype. It is possible to convert terms
between subtype and supertype using type conversion expressions (see Chapter 13 [Type
conversions], page 109).

As previously described, the syntax for non-subtype discriminated union types is

:- type type ---> body.

where type is the name of a type constructor applied to zero or more distinct type
variables (the parameters of the type constructor), and body is a sequence of constructor
definitions separated by semicolons. All universally quantified type variables that occur in
body must be among type’s parameters.

The syntax for subtypes is similar but slightly different:

Chapter 4: Types 44

:- type subtype =< supertype ---> body.

Since a subtype is also a discriminated union type, the rules for discriminated union types
apply to them as well: subtype must be the name of a type constructor applied to zero
or more distinct type variables (its parameters), body must be a sequence of constructor
definitions separated by semicolons, and all universally quantified type variables that occur
in body must be among subtype’s parameters.

supertype must be a type constructor applied to zero or more argument types, which
may be type variables, but they do not have to be, and if they are, do not need to be
distinct. After expanding out equivalences, supertype’s principal type constructor must
specify a discriminated union type whose definition is in scope where the subtype definition
occurs, by normal module visibility rules.

The discriminated union type specified by supertype may itself be a subtype. Following
the chain of subtype definitions, it must be possible to arrive at a base type, which is a
discriminated union type but not a subtype.

The body of the subtype may differ from the body of its supertype in two ways.

• It may omit one or more constructor definitions. The ability to do this is the main
motivation for the use of subtypes.

Since the subtype cannot add definitions of constructors, the set of constructor defini-
tions in the subtype must be a subset of the constructors definitions in the supertype.
We recommend that they should appear in the same relative order as in the supertype
definition.

• It may change the types of some of the arguments of some of the constructors, provided
that each replacement replaces a type with one of its subtypes.

Formally, this means that if the supertype ‘t’ has a constructor ‘f(T1, ..., Tn)’, and
the subtype ‘s =< t’ has a constructor ‘f(S1, ..., Sn)’. then for each Si, the condition
‘Si =< Ti’ must hold.

This is an example of the first kind of difference:

:- type fruit

---> apple

; pear

; lemon

; orange.

:- type citrus_fruit =< fruit

---> lemon

; orange.

And this is an example of the second:

:- type fruit_basket

---> basket(fruit, int).

% What kind of fruit, and how many.

:- type citrus_fruit_basket =< fruit_basket

---> basket(citrus_fruit, int).

(There are more examples below.)

Chapter 4: Types 45

If the subtype retains a constructor from the super type that has one or more exis-
tentially quantified type variables, then there must be a one-to-one mapping between the
existentially quantified type variables for the constructor in the subtype definition and the
same constructor in the supertype definition. The subtype constructor must repeat exactly
the same set of existential class constraints on its existentially quantified type variables
as in the supertype; the subtype constructor cannot add or remove any existential class
constraints.

As mentioned above, any universally quantified type variable that occurs in body must
occur also in subtype. However, this is the only restriction on the list of parameters in sub-
type. For example, it need not have any particular relationship with the list of parameters
of the principal type constructor of supertype. For example, subtype may have a phantom
type parameter (see Section 4.2.1 [Discriminated unions], page 40) that does not occur in
supertype.

(In the following discussion, we assume that all equivalence types have been expanded
out.)

Mercury considers it possible for a type ‘S’ to be a subtype of type ‘T’, where ‘S != T’,
in two cases: where ‘S’ and ‘T’ are both discriminated union type, and where they are both
higher order types. In every other case, ‘S’ is a subtype of ‘T’, denoted ‘S =< T’, if and only
if ‘S’ and ‘T’ are syntactically identical, i.e. ‘S = T’.

A discriminated union type ‘S’ can be a subtype of another discriminated union type ‘T’
in two distinct ways:

• If ‘S’ and ‘T’ have the same principal type constructor, say f/n, which implies that ‘S
= f(S1, ..., Sn)’ and ‘T = f(T1, ..., Tn)’, then ‘S =< T’ holds if and only if for all
i in ‘1..n’, ‘Si =< Ti’.

• If ‘S’ and ‘T’ have different principal type constructors, and if ‘S = f(S1, ..., Sn)’, ‘S
=< T’ holds if

− there is a visible subtype definition starting with ‘:- type f(R1, ..., Rn) =< U’,

− for all i in ‘1..n’, ‘Si = Ri’ (unification), and

− ‘U =< T’.

In other words, if all occurrences of Ri in U are replaced by the corresponding for Si
to give Usub, then ‘Usub =< T’ must hold.

A higher order type ‘S’ can be a subtype of another higher order type ‘T’ in only one
way. Since subtype definitions do not apply to higher order types, this way is analogous to
the first way above.

• ‘P =< Q’ holds for two higher-order types P and Q if and only if all of the following
conditions hold:

− P and Q are either both ‘pred’ types, or both ‘func’ types,

− they have the same arity,

− P and Q have the same argument types (the current implementation does not
allow subtyping in higher-order arguments), and

− if either of P and Q has higher-order inst information, then P and Q must have the
same higher order inst information, i.e. their higher order inst information must
specify the same argument modes, determinism, and purity.

Chapter 4: Types 46

In every case not covered above, ‘S =< T’ if and only if ‘S = T’.

A subtype may be exported as an abstract type by declaring only the name of the
subtype in the interface section of a module (without the ‘=< supertype ’ part). Then the
subtype definition must be given in the implementation section of the same module.

Example:

:- interface.

:- type non_empty_list(T). % abstract type

:- implementation.

:- import list.

:- type non_empty_list(T) =< list(T)

---> [T | list(T)].

Subtypes must not have user-defined equality or comparison predicates. The base type
of a subtype may have user-defined equality or comparison. In that case, values of the
subtype will be tested for equality or compared using those predicates.

There is no special interaction between subtypes and the type class system.

Some more examples of subtypes:

:- type list(T)

---> []

; [T | list(T)].

:- type non_empty_list(T) =< list(T)

---> [T | list(T)].

:- type non_empty_list_of_foo =< list(foo)

---> [foo | list(foo)].

:- type maybe_foo

---> none

; some [T] foo(T) => fooable(T).

:- type foo =< maybe_foo

---> some [T] foo(T) => fooable(T).

:- type task

---> create(pred(int::in, io::di, io::uo) is det)

; delete(pred(int::in, io::di, io::uo) is det).

:- type create_task =< task

---> create(pred(int::in, io::di, io::uo) is det).

And one more complex example.

Chapter 4: Types 47

In the case of a set of mutually recursive types, omitting some constructor definitions
from a type may not be enough; it may be necessary to replace some argument types with
their subtypes as well. Consider this pair of mutually recursive types representing a bipartite
graph, i.e. a graph in which there are two kinds of nodes, and edges always connect two
nodes of different kinds. In this bipartite graph, the two kinds of nodes are or nodes and
and nodes, and each kind of node can be connected to zero, two or more nodes of the other
kind.

:- type or_node

---> or_source(source_id)

; logical_or(and_node, and_node)

; logical_or_list(and_node, and_node, and_node, list(and_node)).

:- type and_node

---> and_source(source_id)

; logical_and(or_node, or_node)

; logical_and_list(or_node, or_node, or_node, list(or_node)).

If we wanted a subtype to represent graphs in which no or node could be connected
to more than two and nodes, one might think that it would be enough to delete the logi-
cal or list constructor from the or node type, like this:

:- type binary_or_node =< or_node

---> or_source(source_id)

; logical_or(and_node, and_node).

However, this would not work, because the and nodes have constructors whose argu-
ments have type or node, not binary or node. One would have to create a subtype of the
and node type that constructs and nodes from binary or nodes, not plain or nodes, like
this:

:- type binary_or_node =< or_node

---> or_source(source_id)

; logical_or(binary_or_and_node, binary_or_and_node).

:- type binary_or_and_node =< and_node

---> and_source(source_id)

; logical_and(binary_or_node, binary_or_node)

; logical_and_list(binary_or_node, binary_or_node, binary_or_node,

list(binary_or_node)).

4.3 Predicate and function type declarations

The argument types of each predicate must be explicitly declared with a ‘:- pred’ decla-
ration. The argument types and return type of each function must be explicitly declared
with a ‘:- func’ declaration. For example:

:- pred is_all_uppercase(string).

:- func strlen(string) = int.

Predicates and functions can be polymorphic; that is, their declarations can include type
variables. For example:

Chapter 4: Types 48

:- pred member(T, list(T)).

:- func length(list(T)) = int.

A predicate or function can be declared to have a given higher-order type (see Chapter 9
[Higher-order], page 76) by using an explicit type qualification in the type declaration. This
is useful where several predicates or functions need to have the same type signature, which
often occurs for type class method implementations (see Chapter 11 [Type classes], page 91),
and for predicates to be passed as higher-order terms.

For example,

:- type foldl_pred(T, U) == pred(T, U, U).

:- type foldl_func(T, U) == (func(T, U) = U).

:- pred p(int) : foldl_pred(T, U).

:- func f(int) : foldl_func(T, U).

is equivalent to

:- pred p(int, T, U, U).

:- pred f(int, T, U) = U.

Type variables in predicate and function declarations are implicitly universally quantified
by default; that is, the predicate or function may be called with arguments and (in the case
of functions) return value whose actual types are any instance of the types specified in the
declaration. For example, the function ‘length/1’ declared above could be called with the
argument having type ‘list(int)’, or ‘list(float)’, or ‘list(list(int))’, etc.

Type variables in predicate and function declarations can also be existentially quantified;
this is discussed in Chapter 12 [Existential types], page 101.

There must only be one predicate with a given name and arity in each module, and only
one function with a given name and arity in each module. It is an error to declare the same
predicate or function twice.

There must be at least one clause defined for each declared predicate or function, except
for those defined using the foreign language interface (see Chapter 16 [Foreign language
interface], page 117). However, Mercury implementations are permitted to provide a method
of processing Mercury programs in which such errors are not reported until and unless the
predicate or function is actually called. (The Melbourne Mercury implementation provides
this with its ‘--allow-stubs’ option. This can be useful during program development,
since it allows you to execute parts of a program while the program’s implementation is
still incomplete.)

Note that a predicate defined using DCG notation (see Section 2.4 [Items], page 12)
will appear to be defined with two fewer arguments than it is declared with. It will also
appear to be called with two fewer arguments when called from predicates defined using
DCG notation. However, when called from an ordinary predicate or function, it must have
all the arguments it was declared with.

The compiler infers the types of expressions, and in particular the types of variables and
overloaded constructors, functions, and predicates. A type assignment is an assignment of
a type to every variable, and of a particular constructor, function, or predicate to every
name in a clause. A type assignment is valid if it satisfies the following conditions.

Chapter 4: Types 49

Each constructor in a clause must have been declared in at least one visible type declara-
tion. The type assigned to each constructor term must match one of the type declarations
for that constructor, and the types assigned to the arguments of that constructor must
match the argument types specified in that type declaration.

The type assigned to each function call term must match the return type of one of the
‘:- func’ declarations for that function, and the types assigned to the arguments of that
function must match the argument types specified in that type declaration.

The type assigned to each predicate argument must match the type specified in one of
the ‘:- pred’ declarations for that predicate. The type assigned to each head argument in
a predicate clause must exactly match the argument type specified in the corresponding ‘:-
pred’ declaration.

The type assigned to each head argument in a function clause must exactly match the
argument type specified in the corresponding ‘:- func’ declaration, and the type assigned
to the result term in a function clause must exactly match the result type specified in the
corresponding ‘:- func’ declaration.

The type assigned to each expression with an explicit type qualification (see Section 3.5
[Expressions], page 32) must match the type specified by the type qualification expression1.

(Here “match” means to be an instance of, i.e. to be identical to for some substitution
of the type parameters, and “exactly match” means to be identical up to renaming of type
parameters.)

One type assignment A is said to be more general than another type assignment B if
there is a binding of the type parameters in A that makes it identical (up to renaming
of parameters) to B. If there is more than one valid type assignment, the compiler must
choose the most general one. If there are two valid type assignments which are not identical
up to renaming and neither of which is more general than the other, then there is a type
ambiguity, and compiler must report an error. A clause is type-correct if there is a unique
(up to renaming) most general valid type assignment. Every clause in a Mercury program
must be type-correct.

4.4 Field access functions

Fields of constructors of discriminated union types may be labelled (see Section 4.2.1 [Dis-
criminated unions], page 40). These labels cause the compiler to generate functions which
can be used to select and update fields of a term in a manner independent of the definition
of the type.

The Mercury language includes syntactic sugar to make it more convenient to select and
update fields inside nested terms (see [Field access expressions], page 34) and to select and
update fields of the DCG arguments of a clause (see Section 3.4 [DCG-goals], page 30).

4.4.1 Field selection

field(Term)

1 The type of an explicitly type qualified term may be an instance of the type specified by the qualifier.
This allows explicit type qualifications to constrain the types of two expressions to be identical, without
knowing the exact types of the expressions. It also allows type qualifications to refer to the types of the
results of existentially typed predicates or functions.

Chapter 4: Types 50

Each field label ‘field ’ in a constructor causes generation of a field selection function
‘field/1’, which takes an expression of the same type as the constructor and returns the
value of the labelled field, failing if the top-level constructor of the argument is not the
constructor containing the field.

If the declaration of the field is in the interface section of the module, the corresponding
field selection function is also exported from the module.

By default, this function has no declared modes—the modes are inferred at each call to
the function. However, the type and modes of this function may be explicitly declared, in
which case it will have only the declared modes.

To create a higher-order value from a field selection function, an explicit lambda ex-
pression must be used, unless a single mode declaration is supplied for the field selection
function. The reason for this is that normally, field access functions are implemented directly
as unifications, without the code of a function being generated for them. The declaration
acts as the request for the generation of that code.

4.4.2 Field update

’field :=’(Term, ValueTerm)

Each field label ‘field ’ in a constructor causes generation of a field update function
‘’field :=’/2’. The first argument of this function is an expression of the same type as
the constructor. The second argument is an expression of the same type as the labelled
field. The return value is a copy of the first argument with the value of the labelled field
replaced by the second argument. ‘’field :=’/2’ fails if the top-level constructor of the
first argument is not the constructor containing the labelled field.

If the declaration of the field is in the interface section of the module, the corresponding
field update function is also exported from the module.

By default, this function has no declared modes—the modes are inferred at each call to
the function. However, the type and modes of this function may be explicitly declared, in
which case it will have only the declared modes.

To create a higher-order value from a field update function, an explicit lambda expression
must be used, unless a single mode declaration is supplied for the field update function.
The reason for this is that normally, as with field selection functions, field update functions
are implemented directly as unifications, without the code of a function being generated for
them. The declaration acts as the request for the generation of that code.

Some fields cannot be updated using field update functions. For the constructor
‘unsettable/2’ below, neither field may be updated because the resulting term would
not be well-typed. A future release may allow multiple fields to be updated by a single
expression to avoid this problem.

:- type unsettable

---> some [T] unsettable(

unsettable1 :: T,

unsettable2 :: T

).

Chapter 4: Types 51

4.4.3 User-supplied field access function declarations

Type and mode declarations for compiler-generated field access functions for fields of con-
structors local to a module may be placed in the interface section of the module. The
user-supplied declarations will be used instead of any automatically generated declarations.
This allows the implementation of a type to be hidden while still allowing client modules
to use record syntax to manipulate values of the type. Supplying a type declaration and
a single mode declaration also allows higher-order terms to be created from a field access
function without using explicit lambda expressions.

If a field occurs in the interface section of a module, then any declaration for a field
access function for that field must also occur in the interface section.

If there are multiple fields with the same label in the same module, only one of those
fields can have user-supplied declarations for its selection function. Similarly, only one of
those fields can have user-supplied declarations for its update function.

Declarations and clauses for field access functions can also be supplied for fields which
are not a part of any type. This is useful when the data structures of a program change so
that a value which was previously stored as part of a type is now computed each time it is
requested. It also allows record syntax to be used for type class methods.

User-declared field access functions may take extra arguments. For example, the Mercury
standard library module map contains the following functions:

:- func elem(K, map(K, V)) = V is semidet.

:- func ’elem :=’(K, map(K, V), V) = map(K, V).

Field access syntax may be used at the top-level of func and mode declarations and in
the head of clauses. For instance:

:- func map(K, V) ^ elem(K) = V.

:- mode in ^ in = out is semidet.

Map ^ elem(Key) = map.lookup(Map, Key).

:- func (map(K, V) ^ elem(K) := V) = V.

:- mode (in ^ in := in) = out is semidet.

(Map ^ elem(Key) := Value) = map.set(Map, Key, Value).

The Mercury standard library modules array and bt_array define similar functions.

4.4.4 Field access examples

The examples make use of the following type declarations:

:- type type1

---> type1(

field1 :: type2,

field2 :: string

).

:- type type2

---> type2(

field3 :: int,

field4 :: int

Chapter 4: Types 52

).

The compiler generates some field access functions for ‘field1’. The functions generated
for the other fields are similar.

:- func type1 ^ field1 = type2.

type1(Field1, _) ^ field1 = Field1.

:- func (type1 ^ field1 := type2) = type1.

(type1(_, Field2) ^ field1 := Field1) = type1(Field1, Field2).

Using these functions and the syntactic sugar described in [Field access expressions],
page 34, programmers can write code such as

:- func type1 ^ increment_field3 = type1.

Term0 ^ increment_field3 =

Term0 ^ field1 ^ field3 := Term0 ^ field1 ^ field3 + 1.

The compiler expands this into

increment_field3(Term0) = Term :-

OldField3 = field3(field1(Term0)),

OldField1 = field1(Term0),

NewField1 = ’field3 :=’(OldField1, OldField3 + 1),

Term = ’field1 :=’(Term0, NewField1).

The field access functions defined in the Mercury standard library module ‘map’ can be
used as follows:

:- func update_field_in_map(map(int, type1), int, string)

= map(int, type1) is semidet.

update_field_in_map(Map, Index, Value) =

Map ^ elem(Index) ^ field2 := Value.

4.5 The standard ordering

For (almost) every Mercury type there exists a standard ordering; any two values of the same
type can be compared under this ordering by using the builtin.compare/3 predicate. The
ordering is total, meaning that the corresponding binary relations are reflexive, transitive
and anti-symmetric. The one exception is higher-order types, which cannot be unified or
compared; any attempt to do so will raise an exception.

The existence of this ordering makes it possible to implement generic data structures
such as sets and maps, without needing to know the specifics of the ordering. Furthermore,
different platforms often have their own natural orderings which are not necessarily consis-
tent with each other. As such, the standard ordering for most types is not fully defined.

For the primitive integer types, the standard ordering is the usual numerical ordering.
Implementations should reject code containing overflowing integer literals.

For the primitive type float, the standard ordering approximates the usual numerical
ordering. If the result of builtin.compare/3 is (<) or (>) then this relation holds in the
numerical ordering, but this is not necessarily the case for (=) due to lack of precision. In
the standard ordering, “negative” and “positive” zero values are equal. Implementations

Chapter 4: Types 53

should replace overflowing literals with the infinity of the same sign; in the standard ordering
positive infinity is greater than all finite values and negative infinity is less than all finite
values. Implementations must throw an exception when comparing a “not a number” (NaN)
value.

For the primitive type char, the standard ordering is the numerical ordering of the
Unicode code point values.

For the primitive type string, the standard ordering is implementation dependent.
The current implementation performs string comparison using the C strcmp() function,
the Java String.compareTo() method, and the C# System.String.CompareOrdinal()

method, when compiling to C, Java and C# respectively.

For tuple types, corresponding arguments are compared, with the first argument being
the most significant, then the second, and so on.

For discriminated union types (other than subtypes), if both values have the same prin-
cipal constructor then corresponding arguments are compared in order, with the first ar-
gument being the most significant, then the second, and so on. If the values have different
principal constructors, then the value whose principal constructor is listed first in the defini-
tion of the type will compare as less than the other value. There is one exception from this
rule: in types that are subject to a foreign_enum pragma, the outcomes of comparisons
are decided by user’s chosen foreign language representations, using the rules of the foreign
language.

For subtypes, the two values compare as though converted to the base type. The ordering
of constructors in a subtype definition does not affect the standard ordering.

Chapter 5: Modes 54

5 Modes

5.1 Insts, modes, and mode definitions

The mode of a predicate, or function, is a mapping from the initial state of instantiation
of the arguments of the predicate, or the arguments and result of a function, to their final
state of instantiation. To describe states of instantiation, we use information provided by
the type system. Types can be viewed as regular trees with two kinds of nodes: or-nodes
representing types and and-nodes representing constructors. The children of an or-node
are the constructors that can be used to construct terms of that type; the children of an
and-node are the types of the arguments of the constructors. We attach mode information
to the or-nodes of type trees.

An instantiatedness tree is an assignment of an instantiatedness — either free or bound
— to each or-node of a type tree, with the constraint that all descendants of a free node
must be free.

A term is approximated by an instantiatedness tree if for every node in the instantiat-
edness tree,

• if the node is “free”, then the corresponding node in the term (if any) is a free variable
that does not share with any other variable (we call such variables distinct);

• if the node is “bound”, then the corresponding node in the term (if any) is a function
symbol.

When an instantiatedness tree tells us that a variable is bound, there may be several
alternative function symbols to which it could be bound. The instantiatedness tree does
not tell us which of these it is bound to; instead for each possible function symbol it tells
us exactly which arguments of the function symbol will be free and which will be bound.
The same principle applies recursively to these bound arguments.

Mercury’s mode system allows users to declare names for instantiatedness trees using
declarations such as

:- inst listskel == bound([] ; [free | listskel]).

This instantiatedness tree describes lists whose skeleton is known but whose elements
are distinct variables. As such, it approximates the term [A,B] but not the term [H|T]

(only part of the skeleton is known), the term [A,2] (not all elements are variables), or the
term [A,A] (the elements are not distinct variables).

As a shorthand, the mode system provides free and ground as names for instantiated-
ness trees all of whose nodes are free and bound respectively (with the exception of solver
type values which may be semantically ground, but be defined in terms of non-ground solver
type values; see Chapter 18 [Solver types], page 152 for more detail). The shape of these
trees is determined by the type of the variable to which they apply.

A more concise, alternative syntax exists for bound instantiatedness trees:

:- inst maybeskel

---> no

; yes(free).

which is equivalent to writing

Chapter 5: Modes 55

:- inst maybeskel == bound(no ; yes(free)).

You can specify what type (actually what type constructor) an inst is intended to be
used on by adding for, followed by the name and arity of that type constructor, after the
name of the inst, like this:

:- inst maybeskel for maybe/1

---> no

; yes(free).

This can be useful documentation, and the compiler will generate an error message when
an inst that was declared to be for values of one type constructor is applied to values of
another type constructor.

As execution proceeds, variables may become more instantiated. A mode mapping is
a mapping from an initial instantiatedness tree to a final instantiatedness tree, with the
constraint that no node of the type tree is transformed from bound to free. Mercury allows
the user to specify mode mappings directly by expressions such as inst1 >> inst2, or to
give them a name using declarations such as

:- mode m == inst1 >> inst2.

Two standard shorthand modes are provided, corresponding to the standard notions of
inputs and outputs:

:- mode in == ground >> ground.

:- mode out == free >> ground.

Though we do not recommend this, Prolog fans who want to use the symbols ‘+’ and ‘-’
can do so by simply defining them using a mode declaration:

:- mode (+) == in.

:- mode (-) == out.

These two modes are enough for most functions and predicates. Nevertheless, Mer-
cury’s mode system is sufficiently expressive to handle more complex data-flow patterns,
including those involving partially instantiated data structures, i.e. terms that contain both
function symbols and free variables, such as ‘f(a, b, X)’. In the current implementation,
partially instantiated data structures are unsupported due to a lack of alias tracking in the
mode system. For more information, please see the ‘LIMITATIONS.md’ file distributed with
Mercury.

For example, consider an interface to a database that associates data with keys, and
provides read and write access to the items it stores. To represent accesses to the database
over a network, you would need declarations such as

:- type operation

---> lookup(key, data)

; set(key, data).

:- inst request for operation/0

---> lookup(ground, free)

; set(ground, ground).

:- mode create_request == free >> request.

:- mode satisfy_request == request >> ground.

‘inst’ and ‘mode’ declarations can be parametric. For example, the following declaration

Chapter 5: Modes 56

:- inst listskel(Inst) for list/1

---> []

; [Inst | listskel(Inst)].

defines the inst ‘listskel(Inst)’ to be a list skeleton whose elements have inst Inst; you
can then use insts such as ‘listskel(listskel(free))’, which represents the instantiation
state of a list of lists of free variables. The standard library provides the parametric modes

:- mode in(Inst) == Inst >> Inst.

:- mode out(Inst) == free >> Inst.

so that for example the mode ‘create_request’ defined above could have be defined as

:- mode create_request == out(request).

There must not be more than one inst definition with the same name and arity in the
same module. Similarly, there must not be more than one mode definition with the same
name and arity in the same module.

Note that user defined insts and modes may not have names that have meanings in
Mercury. (Most of these are documented in later sections.)

The list of reserved inst names is

=<

any

bound

bound_unique

clobbered

clobbered_any

free

ground

is

mostly_clobbered

mostly_unique

mostly_unique_any

not_reached

unique

unique_any

The list of reserved mode names is

=

>>

any_func

any_pred

func

is

pred

5.2 Predicate and function mode declarations

A predicate mode declaration assigns a mode mapping to each argument of a predicate. A
function mode declaration assigns a mode mapping to each argument of a function, and

Chapter 5: Modes 57

a mode mapping to the function result. Each mode of a predicate or function is called a
procedure. For example, given the mode names defined by

:- mode out_listskel == free >> listskel.

:- mode in_listskel == listskel >> listskel.

the (type and) mode declarations of the function ‘length’ and predicate ‘append’ are as
follows:

:- func length(list(T)) = int.

:- mode length(in_listskel) = out.

:- mode length(out_listskel) = in.

:- pred append(list(T), list(T), list(T)).

:- mode append(in, in, out).

:- mode append(out, out, in).

Note that functions may have more than one mode, just like predicates; functions can
be reversible.

Alternately, the mode declarations for ‘length’ could use the standard library modes
‘in/1’ and ‘out/1’:

:- func length(list(T)) = int.

:- mode length(in(listskel)) = out.

:- mode length(out(listskel)) = in.

As for type declarations, a predicate or function can be defined to have a given higher-
order inst (see Section 9.3 [Higher-order insts and modes], page 79) by using ‘with_inst‘

in the mode declaration.

For example,

:- inst foldl_pred == (pred(in, in, out) is det).

:- inst foldl_func == (func(in, in) = out is det).

:- mode p(in) ‘with_inst‘ foldl_pred.

:- mode f(in) ‘with_inst‘ foldl_func.

is equivalent to

:- mode p(in, in, in, out) is det.

:- mode f(in, in, in) = out is det.

(‘is det’ is explained in Chapter 7 [Determinism], page 64.)

If a predicate or function has only one mode, the ‘pred’ and ‘mode’ declaration can be
combined:

:- func length(list(T)::in) = (int::out).

:- pred append(list(T)::in, list(T)::in, list(T)::out).

:- pred p ‘with_type‘ foldl_pred(T, U) ‘with_inst‘ foldl_pred.

It is an error for a predicate or function whose ‘pred’ and ‘mode’ declarations are so
combined to have any other separate ‘mode’ declarations.

If there is no mode declaration for a function, the compiler assumes a default mode for
the function in which all the arguments have mode in and the result of the function has

Chapter 5: Modes 58

mode out. (However, there is no requirement that a function have such a mode; if there is
any explicit mode declaration, it overrides the default.)

If a predicate or function type declaration occurs in the interface section of a module,
then all mode declarations for that predicate or function must occur in the interface section
of the same module. Likewise, if a predicate or function type declaration occurs in the im-
plementation section of a module, then all mode declarations for that predicate or function
must occur in the implementation section of the same module. Therefore, is an error for a
predicate or function to have mode declarations in both the interface and implementation
sections of a module.

A function or predicate mode declaration is an assertion by the programmer that for
all possible argument terms and (if applicable) result term for the function or predicate
that are approximated (in our technical sense) by the initial instantiatedness trees of the
mode declaration and all of whose free variables are distinct, if the function or predicate
succeeds, then the resulting binding of those argument terms and (if applicable) result term
will in turn be approximated by the final instantiatedness trees of the mode declaration,
with all free variables again being distinct. We refer to such assertions as mode declaration
constraints. These assertions are checked by the compiler, which rejects programs if it
cannot prove that their mode declaration constraints are satisfied.

Note that with the usual definition of ‘append’, the mode

:- mode append(in_listskel, in_listskel, out_listskel).

would not be allowed, since it would create aliasing between the different arguments — on
success of the predicate, the list elements would be free variables, but they would not be
distinct.

In Mercury it is always possible to call a procedure with an argument that is more
bound than the initial inst specified for that argument in the procedure’s mode declaration.
In such cases, the compiler will insert additional unifications to ensure that the argument
actually passed to the procedure will have the inst specified. For example, if the predicate
p/1 has mode ‘p(out)’, you can still call ‘p(X)’ if X is ground. The compiler will transform
this code to ‘p(Y), X = Y’ where Y is a fresh variable. It is almost as if the predicate p/1

has another mode ‘p(in)’; we call such modes “implied modes”.

To make this concept precise, we introduce the following definition. A term satisfies an
instantiatedness tree if for every node in the instantiatedness tree,

• if the node is “free”, then the corresponding node in the term (if any) is either a distinct
free variable, or a function symbol.

• if the node is “bound”, then the corresponding node in the term (if any) is a function
symbol.

The mode set for a predicate or function is the set of mode declarations for the predicate
or function. A mode set is an assertion by the programmer that the predicate should only
be called with argument terms that satisfy the initial instantiatedness trees of one of the
mode declarations in the set (i.e. the specified modes and the modes they imply are the only
allowed modes for this predicate or function). We refer to the assertion associated with a
mode set as the mode set constraint; these are also checked by the compiler.

A predicate or function p is well-moded with respect to a given mode declaration if given
that the predicates and functions called by p all satisfy their mode declaration constraints,
there exists an ordering of the conjuncts in each conjunction in the clauses of p such that

Chapter 5: Modes 59

• p satisfies its mode declaration constraint, and

• p satisfies the mode set constraint of all of the predicates and functions it calls

We say that a predicate or function is well-moded if it is well-moded with respect to all
the mode declarations in its mode set, and we say that a program is well-moded if all its
predicates and functions are well-moded.

The mode analysis algorithm checks one procedure at a time. It abstractly interprets
the definition of the predicate or function, keeping track of the instantiatedness of each
variable, and selecting a mode for each call and unification in the definition. To ensure
that the mode set constraints of called predicates and functions are satisfied, the compiler
may reorder the elements of conjunctions; it reports an error if no satisfactory order exists.
Finally it checks that the resulting instantiatedness of the procedure’s arguments is the
same as the one given by the procedure’s declaration.

The mode analysis algorithm annotates each call with the mode used.

5.3 Constrained polymorphic modes

Mode declarations for predicates and functions may also have inst parameters. However,
such parameters must be constrained to be compatible with some other inst. In a predicate
or function mode declaration, an inst of the form ‘InstParam =< Inst ’, where InstParam
is a variable and Inst is an inst, states that InstParam is constrained to be compatible

with Inst, that is, InstParam represents some inst that can be used anywhere where Inst
is required. If an inst parameter occurs more than once in a declaration, it must have the
same constraint on each occurrence.

For example, in the mode declaration

:- mode append(in(list_skel(I =< ground)), in(list_skel(I =< ground)),

out(list_skel(I =< ground))) is det.

I is an inst parameter which is constrained to be ground. If ‘append’ is called with the first
two arguments having an inst of, say, ‘list_skel(bound(f))’, then after ‘append’ returns,
all three arguments will have inst ‘list_skel(bound(f))’. If the mode of append had been
simply

:- mode append(in(list_skel(ground)), in(list_skel(ground)),

out(list_skel(ground))) is det.

then we would only have been able to infer an inst of ‘list_skel(ground)’ for the third
argument, not the more specific inst.

Note that attempting to call ‘append’ when the first two arguments do not have ground
insts (e.g. ‘list_skel(bound(g(free)))’) is a mode error because it violates the constraint
on the inst parameter.

To avoid having to repeat a constraint everywhere that an inst parameter occurs, it is
possible to list the constraints after the rest of the mode declaration, following a ‘<=’. E.g.
the above example could have been written as

:- (mode append(in(list_skel(I)), in(list_skel(I)),

out(list_skel(I))) is det) <= I =< ground.

Note that in the current Mercury implementation this syntax requires parentheses around
the ‘mode(...) is Det ’ part of the declaration.

Chapter 5: Modes 60

Also, if the constraint on an inst parameter is ‘ground’ then it is not necessary to give
the constraint in the declaration. The example can be further shortened to

:- mode append(in(list_skel(I)), in(list_skel(I)), out(list_skel(I)))

is det.

Constrained polymorphic modes are particularly useful when passing objects with higher-
order types to polymorphic predicates, since they allow the higher-order mode information
to be retained (see Chapter 9 [Higher-order], page 76).

5.4 Different clauses for different modes

Because the compiler automatically reorders conjunctions to satisfy the modes, it is often
possible for a single clause to satisfy different modes. However, occasionally reordering of
conjunctions is not sufficient; you may want to write different code for different modes.

For example, the usual code for list append

append([], Ys, Ys).

append([X|Xs], Ys, [X|Zs]) :-

append(Xs, Ys, Zs).

works fine in most modes, but is not very satisfactory for the ‘append(out, in, in)’ mode
of append, because although every call in this mode only has at most one solution, the
compiler’s determinism inference will not be able to infer that. This means that using
the usual code for append in this mode will be inefficient, and the overly conservative
determinism inference may cause spurious determinism errors later.

For this mode, it is better to use a completely different algorithm:

append(Prefix, Suffix, List) :-

list.length(List, ListLength),

list.length(Suffix, SuffixLength),

PrefixLength = ListLength - SuffixLength,

list.split_list(PrefixLength, List, Prefix, Suffix).

However, that code doesn’t work in the other modes of ‘append’.

To handle such cases, you can use mode annotations on clauses, which indicate that
particular clauses should only be used for particular modes. To specify that a clause only
applies to a given mode, each argument Arg of the clause head should be annotated with
the corresponding argument mode Mode, using the ‘::’ mode qualification operator, i.e.
‘Arg :: Mode ’.

For example, if ‘append’ was declared as

:- pred append(list(T), list(T), list(T)).

:- mode append(in, in, out).

:- mode append(out, out, in).

:- mode append(in, out, in).

:- mode append(out, in, in).

then you could implement it as

Chapter 5: Modes 61

append(L1::in, L2::in, L3::out) :- usual_append(L1, L2, L3).

append(L1::out, L2::out, L3::in) :- usual_append(L1, L2, L3).

append(L1::in, L2::out, L3::in) :- usual_append(L1, L2, L3).

append(L1::out, L2::in, L3::in) :- other_append(L1, L2, L3).

usual_append([], Ys, Ys).

usual_append([X|Xs], Ys, [X|Zs]) :- usual_append(Xs, Ys, Zs).

other_append(Prefix, Suffix, List) :-

list.length(List, ListLength),

list.length(Suffix, SuffixLength),

PrefixLength = ListLength - SuffixLength,

list.split_list(PrefixLength, List, Prefix, Suffix).

This language feature can be used to write “impure” code that doesn’t have any consis-
tent declarative semantics. For example, you can easily use it to write something similar to
Prolog’s (in)famous ‘var/1’ predicate:

:- mode var(in).

:- mode var(free>>free).

var(_::in) :- fail.

var(_::free>>free) :- true.

As you can see, in this case the two clauses are not equivalent.

Because of this possibility, predicates or functions which are defined using different code
for different modes are by default assumed to be impure; the programmer must either (1)
carefully ensure that the logical meaning of the clauses is the same for all modes, which can
be declared to the compiler through a ‘pragma promise_equivalent_clauses’ declaration,
or a ‘pragma promise_pure’ declaration, or (2) declare the predicate or function as impure.
See Chapter 17 [Impurity], page 146.

In the example with ‘append’ above, the two ways of implementing append do have the
same declarative semantics, so we can safely use the first approach:

:- pragma promise_equivalent_clauses(append/3).

The pragma

:- pragma promise_pure(append/3).

would also promise that the clauses are equivalent, but on top of that would also promise
that the code of each clause is pure. Sometimes, if some clauses contain impure code, that
is a promise that the programmer wants to make, but this extra promise is unnecessary in
this case.

In the example with ‘var/1’ above, the two clauses have different semantics, so the
predicate must be declared as impure:

:- impure pred var(T).

Chapter 6: Unique modes 62

6 Unique modes

Mode declarations can also specify so-called “unique modes”. Mercury’s unique modes are
similar to “linear types” in some functional programming languages such as Clean. They
allow you to specify when there is only one reference to a particular value, and when there
will be no more references to that value. If the compiler knows there will be no more
references to a value, it can perform “compile-time garbage collection” by automatically
inserting code to deallocate the storage associated with that value. Even more importantly,
the compiler can also simply reuse the storage immediately, for example by destructively
updating one element of an array rather than making a new copy of the entire array in
order to change one element. Unique modes are also the mechanism Mercury uses to
provide declarative I/O.

We have not yet implemented unique modes fully, and the details are still in a state of
flux. So the following should be considered tentative.

6.1 Destructive update

In addition to the insts mentioned above (free, ground, and bound(...)), Mercury also
provides “unique” insts unique and unique(...) which are like ground and bound(...)

respectively, except that they carry the additional constraint that there can only be one
reference to the corresponding value. There is also an inst dead which means that there
are no references to the corresponding value, so the compiler is free to generate code that
reuses that value. There are three standard modes for manipulating unique values:

% unique output

:- mode uo == free >> unique.

% unique input

:- mode ui == unique >> unique.

% destructive input

:- mode di == unique >> dead.

Mode uo is used to create a unique value. Mode ui is used to inspect a unique value
without losing its uniqueness. Mode di is used to deallocate or reuse the memory occupied
by a value that will not be used.

Note that a value is not considered unique if it might be needed on backtracking. This
means that unique modes are generally only useful for code whose determinism is det or
cc_multi (see Chapter 7 [Determinism], page 64).

Unlike bound instantiatedness trees, there is no alternative syntax for unique instanti-
atedness trees.

6.2 Backtrackable destructive update

“Well it just so happens that your friend here is only mostly dead.
There’s a big difference between mostly dead and all dead. . .
Now, mostly dead is slightly alive.
Now, all dead — well, with all dead, there’s usually only one thing that you
can do.”

Chapter 6: Unique modes 63

“What’s that?”

“Go through his clothes and look for loose change!”

— from the movie “The Princess Bride”.

To allow for backtrackable destructive updates — that is, updates whose effect is undone
on backtracking, perhaps by recording the overwritten values on a “trail” so that they can
be restored after backtracking — Mercury also provides “mostly unique” modes. The insts
mostly_unique and mostly_dead are equivalent to unique and dead, except that only
references which will be encountered during forward execution are counted — it is OK for
mostly_unique or mostly_dead values to be needed again on backtracking.

Mercury defines some standard modes for manipulating “mostly unique” values, just as
it does for unique values:

% mostly unique output

:- mode muo == free >> mostly_unique.

% mostly unique input

:- mode mui == mostly_unique >> mostly_unique.

% mostly destructive input

:- mode mdi == mostly_unique >> mostly_dead.

6.3 Limitations of the current implementation

The implementation of the mode analysis algorithm is not quite complete; as a result, it
is not possible to use nested unique modes, i.e. modes in which anything but the top level
of a variable is unique. If you do, you will get unique mode errors when you try to get a
unique field of a unique data structure. It is also not possible to use unique-input modes;
only destructive-input and unique-output modes work.

The Mercury compiler does not (yet) reuse dead values. The only destructive update
in the current implementation occurs in library modules, e.g. for I/O and arrays. We
do however plan to implement structure reuse and compile-time garbage collection in the
future.

Chapter 7: Determinism 64

7 Determinism

7.1 Determinism categories

For each mode of a predicate or function, we categorise that mode according to how many
times it can succeed, and whether or not it can fail before producing its first solution.

If all possible calls to a particular mode of a predicate or function which return to the
caller (calls which terminate, do not throw an exception and do not cause a fatal runtime
error)

• have exactly one solution, then that mode is deterministic (det);

• either have no solutions or have one solution, then that mode is semideterministic
(semidet);

• have at least one solution but may have more, then that mode is multisolution (multi);

• have zero or more solutions, then that mode is nondeterministic (nondet);

• fail without producing a solution, then that mode has a determinism of failure.

If no possible calls to a particular mode of a predicate or function can return to the
caller, then that mode has a determinism of erroneous.

The determinism annotation erroneous is used on the library predicates
‘require.error/1’ and ‘exception.throw/1’, but apart from that, determinism
annotations erroneous and failure are generally not needed.

To summarize:

Maximum number of solutions

Can fail? 0 1 > 1

no erroneous det multi

yes failure semidet nondet

(Note: the “Can fail?” column here indicates only whether the procedure can fail before
producing at least one solution; attempts to find a second solution to a particular call, e.g.
for a procedure with determinism multi, are always allowed to fail.)

The determinism of each mode of a predicate or function is indicated by an annotation
on the mode declaration. For example:

:- pred append(list(T), list(T), list(T)).

:- mode append(in, in, out) is det.

:- mode append(out, out, in) is multi.

:- mode append(in, in, in) is semidet.

:- func length(list(T)) = int.

:- mode length(in) = out is det.

:- mode length(in(list_skel)) = out is det.

:- mode length(in) = in is semidet.

An annotation of det or multi is an assertion that for every value each of the inputs,
there exists at least one value of the outputs for which the predicate is true, or (in the
case of functions) for which the function term is equal to the result term. Conversely, an
annotation of det or semidet is an assertion that for every value each of the inputs, there

Chapter 7: Determinism 65

exists at most one value of the outputs for which the predicate is true, or (in the case of
functions) for which the function term is equal to the result term. These assertions are called
the mode-determinism assertions; they can play a role in the semantics, because in certain
circumstances, they may allow an implementation to perform optimizations that would not
otherwise be allowed, such as optimizing away a goal with no outputs even though it might
infinitely loop.

If the mode of the predicate is given in the :- pred declaration rather than in a separate
:- mode declaration, then the determinism annotation goes on the :- pred declaration
(and similarly for functions). In particular, this is necessary if a predicate does not have
any argument variables. If the determinism declaration is given on a :- func declaration
without the mode, the function is assumed to have the default mode (see Chapter 5 [Modes],
page 54 for more information on default modes of functions).

For example:

:- pred loop(int::in) is erroneous.

loop(X) :- loop(X).

:- pred p is det.

p.

:- pred q is failure.

q :- fail.

If there is no mode declaration for a function, then the default mode for that function
is considered to have been declared as det. If you want to write a partial function, i.e. one
whose determinism is semidet, then you must explicitly declare the mode and determinism.

In Mercury, a function is supposed to be a true mathematical function of its arguments;
that is, the value of the function’s result should be determined only by the values of its
arguments. Hence, for any mode of a function that specifies that all the arguments are fully
input (i.e. for which the initial inst of all the arguments is a ground inst), the determinism
of that mode can only be det, semidet, erroneous, or failure.

The determinism categories form this lattice:

erroneous

/ \

failure det

\ / \

semidet multi

\ /

nondet

The higher up this lattice a determinism category is, the more the compiler knows about
the number of solutions of procedures of that determinism.

7.2 Determinism checking and inference

The determinism of goals is inferred from the determinism of their component parts, ac-
cording to the rules below. The inferred determinism of a procedure is just the inferred
determinism of the procedure’s body.

Chapter 7: Determinism 66

For procedures that are local to a module, the determinism annotations may be omit-
ted; in that case, their determinism will be inferred. (To be precise, the determinism of
procedures without a determinism annotation is defined as the least fixpoint of the trans-
formation which, given an initial assignment of the determinism det to all such procedures,
applies those rules to infer a new determinism assignment for those procedures.)

It is an error to omit the determinism annotation for procedures that are exported from
their containing module.

If a determinism annotation is supplied for a procedure, the declared determinism is
compared against the inferred determinism. If the declared determinism is greater than or
not comparable to the inferred determinism (in the partial ordering above), it is an error.
If the declared determinism is less than the inferred determinism, it is not an error, but the
implementation may issue a warning.

The determinism category of each goal is inferred according to the following rules. These
rules work with the two components of determinism categories: whether the goal can fail
without producing a solution, and the maximum number of solutions of the goal (0, 1, or
more). If the inference process below reports that a goal can succeed more than once, but
the goal generates no outputs that are visible from outside the goal, and the goal is not
impure (see Chapter 17 [Impurity], page 146), then the final determinism of the goal will
be based on the goal succeeding at most once, since the compiler will implicitly prune away
any duplicate solutions.

Calls The determinism category of a call is the determinism declared or inferred for
the called mode of the called procedure.

Unifications
The determinism of a unification is either det, semidet, or failure, depending
on its mode.

A unification that assigns the value of one variable to another is deterministic.
A unification that constructs a structure and assigns it to a variable is also de-
terministic. A unification that tests whether a variable has a given top function
symbol is semideterministic, unless the compiler knows the top function symbol
of that variable, in which case its determinism is either det or failure depending
on whether the two function symbols are the same or not. A unification that
tests two variables for equality is semideterministic, unless the compiler knows
that the two variables are aliases for one another, in which case the unification
is deterministic, or unless the compiler knows that the two variables have dif-
ferent function symbols in the same position, in which case the unification has
a determinism of failure.

The compiler knows the top function symbol of a variable if the previous part
of the procedure definition contains a unification of the variable with a function
symbol, or if the variable’s type has only one function symbol.

Conjunctions
The determinism of the empty conjunction (the goal ‘true’) is det. The con-
junction ‘(A, B)’ can fail if either A can fail, or if A can succeed at least once,
and B can fail. The conjunction can succeed at most zero times if either A or B
can succeed at most zero times. The conjunction can succeed more than once

Chapter 7: Determinism 67

if either A or B can succeed more than once and both A and B can succeed at
least once. (If e.g. A can succeed at most zero times, then even if B can suc-
ceed many times the maximum number of solutions of the conjunction is still
zero.) Otherwise, i.e. if both A and B succeed at most once, the conjunction
can succeed at most once.

Switches A disjunction is a switch if each disjunct has near its start a unification that
tests the same bound variable against a different function symbol. For example,
consider the common pattern

(

L = [], empty(Out)

;

L = [H|T], nonempty(H, T, Out)

)

If L is input to the disjunction, then the disjunction is a switch on L.

If two variables are unified with each other, then whatever function symbol one
variable is unified with, the other variable is considered to be unified with the
same function symbol. In the following example, since K is unified with L, the
second disjunct unifies L as well as K with cons, and thus the disjunction is
recognized as a switch.

(

L = [], empty(Out)

;

K = L, K = [H|T], nonempty(H, T, Out)

)

A switch can fail if the various arms of the switch do not cover all the function
symbols in the type of the switched-on variable, or if the code in some arms
of the switch can fail, bearing in mind that in each arm of the switch, the
unification that tests the switched-on variable against the function symbol of
that arm is considered to be deterministic. A switch can succeed several times
if some arms of the switch can succeed several times, possibly because there are
multiple disjuncts that test the switched-on variable against the same function
symbol. A switch can succeed at most zero times only if all the reachable arms
of the switch can succeed at most zero times. (A switch arm is not reachable if
it unifies the switched-on variable with a function symbol that is ruled out by
that variable’ initial instantation state.)

Only unifications may occur before the test of the switched-on variable in each
disjunct. Tests of the switched-on variable may occur within existential quan-
tification goals.

The following example is a switch.

(

Out = 1, L = []

;

some [H, T] (

L = [H|T],

nonempty(H, T, Out)

Chapter 7: Determinism 68

)

)

The following example is not a switch because the call in the first disjunct
occurs before the test of the switched-on variable.

(

empty(Out), L = []

;

L = [H|T], nonempty(H, T, Out)

)

The unification of the switched-on variable with a function symbol may occur
inside a nested disjunction in a given disjunct, provided that unification is
preceded only by other unifications, both inside the nested disjunction and
before the nested disjunction. The following example is a switch on X, provided
X is bound beforehand.

(

X = f

p(Out)

;

Y = X,

(

Y = g,

Intermediate = 42

;

Z = Y,

Z = h(Arg),

q(Arg, Intermediate)

),

r(Intermediate, Out)

)

Disjunctions
The determinism of the empty disjunction (the goal ‘fail’) is failure. A
disjunction ‘(A ; B)’ that is not a switch can fail if both A and B can fail. It
can succeed at most zero times if both A and B can succeed at most zero times.
It can succeed at most once if one of A and B can succeed at most once and
the other can succeed at most zero times. Otherwise, i.e. if either A or B can
succeed more than once, or if both A and B can succeed at least once, it can
succeed more than once.

If-then-else
If the condition of an if-then-else cannot fail, the if-then-else is equivalent to
the conjunction of the condition and the “then” part, and its determinism is
computed accordingly. Otherwise, an if-then-else can fail if either the “then”
part or the “else” part can fail. It can succeed at most zero times if the “else”
part can succeed at most zero times and if at least one of the condition and the
“then” part can succeed at most zero times. It can succeed more than once if

Chapter 7: Determinism 69

any one of the condition, the “then” part and the “else” part can succeed more
than once.

Negations

If the determinism of the negated goal is erroneous, then the determinism of
the negation is erroneous. If the determinism of the negated goal is failure,
the determinism of the negation is det. If the determinism of the negated goal
is det or multi, the determinism of the negation is failure. Otherwise, the
determinism of the negation is semidet.

7.3 Replacing compile-time checking with run-time checking

Note that “perfect” determinism inference is an undecidable problem, because it requires
solving the halting problem. (For instance, in the following example

:- pred p(T, T).

:- mode p(in, out) is det.

p(A, B) :-

(

something_complicated(A, B)

;

B = A

).

‘p/2’ can have more than one solution only if ‘something_complicated/2’ can succeed.)
Sometimes, the rules specified by the Mercury language for determinism inference will infer
a determinism that is not as precise as you would like. However, it is generally easy to
overcome such problems. The way to do this is to replace the compiler’s static checking
with some manual run-time checking. For example, if you know that a particular goal
should never fail, but the compiler infers that goal to be semidet, you can check at runtime
that the goal does succeed, and if it fails, call the library predicate ‘error/1’.

:- pred q(T, T).

:- mode q(in, out) is det.

q(A, B) :-

(if goal_that_should_never_fail(A, B0) then

B = B0

else

error("goal_that_should_never_fail failed!")

).

The predicate error/1 has determinism erroneous, which means the compiler knows that it
will never succeed or fail, so the inferred determinism for the body of q/2 is det. (Checking
assumptions like this is good coding style anyway. The small amount of up-front work
that Mercury requires is paid back in reduced debugging time.) Mercury’s mode analysis
knows that computations with determinism erroneous can never succeed, which is why it
does not require the “else” part to generate a value for B. The introduction of the new
variable B0 is necessary because the condition of an if-then-else is a negated context, and
can export the values it generates only to the “then” part of the if-then-else, not directly to

Chapter 7: Determinism 70

the surrounding computation. (If the surrounding computations had direct access to values
generated in conditions, they might access them even if the condition failed.)

7.4 Interfacing nondeterministic code with the real world

Normally, attempting to call a nondet or multi mode of a predicate from a predicate
declared as semidet or det will cause a determinism error. So how can we call nondeter-
ministic code from deterministic code? There are several alternative possibilities.

If you just want to see if a nondeterministic goal is satisfiable or not, without needing to
know what variable bindings it produces, then there is no problem - determinism analysis
considers nondet and multi goals with no non-local output variables to be semidet and
det respectively.

If you want to use the values of output variables, then you need to ask yourself which
one of possibly many solutions to a goal do you want? If you want all of them, you need to
one of the predicates in the standard library module ‘solutions’, such as ‘solutions/2’
itself, which collects all of the solutions to a goal into a list — see Chapter 9 [Higher-order],
page 76.

If you just want one solution from a predicate and don’t care which, you should declare
the relevant mode of the predicate to have determinism cc_nondet or cc_multi (depending
on whether you are guaranteed at least one solution or not). This tells the compiler that
this mode of this predicate may have more than one solution when viewed as a statement
in logic, but the implementation should stop after generating the first solution. In other
words, the implementation should commit to the first solution.

The commit to the first solution means that a piece of cc_nondet or cc_multi code can
never be asked to generate a second solution. If e.g. a cc_nondet call is in a conjunction,
then no later goal in that conjunction (after mode reordering) may fail, because that would
ask the committed choice goal for a second solution. The compiler enforces this rule.

In the declarative semantics, which solution will be the first is unpredictable, but in the
operational semantics, you can predict which solution will be the first, since Mercury does
depth-first search with left-to-right execution of clause bodies, though that is not on the
source code form of each clause body, but on its form after mode analysis reordering to put
the producer of each variable before all its consumers.

The ‘committed choice nondeterminism’ of a predicate has to be propagated up the
call tree, making its callers, its callers’ callers, and so on, also cc_nondet or cc_multi, until
either you get to main/2 at the top of the call tree, or you get to a location where you don’t
have to propagate the committed choice context upward anymore.

While main/2 is usually declared to have determinism det, it may also be declared cc_

multi. In the latter case, while the program’s declarative semantics may admit more than
one solution, the implementation will stop after the first, so alternative solutions to main/2

(and hence also to cc_nondet or cc_multi predicates called directly or indirectly from
‘main/2’) are implicitly pruned away. This is similar to the “don’t care” nondeterminism
of committed choice logic programming languages such as GHC.

One way to stop propagating committed choice nondeterminism is the one mentioned
above: if a goal has no non-local output variables (i.e. none of the goal’s outputs are visible
from outside the goal), then the goal’s solutions are indistinguishable from the outside,

Chapter 7: Determinism 71

and the implementation will only attempt to satisfy the goal once, whether or not the goal
is committed choice. Therefore if a cc_multi goal has all its outputs ignored, then the
compiler considers it to be a det goal, while if a cc_nondet goal has all its outputs ignored,
then the compiler considers it to be a semidet goal.

The other way to stop propagating committed choice nondeterminism is applicable when
you know that all the solutions returned will be equivalent in all the ways that your program
cares about. For example, you might want to find the maximum element in a set by iterating
over the elements in the set. Iterating over the elements in a set in an unspecified order is a
nondeterministic operation, but no matter which order you iterate over them, the maximum
value in the set should be the same.

If this condition is satisfied, i.e. if you know that there will only ever be at most one
distinct solution under your equality theory of the output variables, then you can use a
‘promise_equivalent_solutions’ determinism cast. If goal ‘G’ is a cc_multi goal whose
outputs are X and Y, then promise_equivalent_solutions [X, Y] (G) promises the com-
piler that all solutions of G are equivalent, so that regardless of which solution of G the im-
plementation happens to commit to, the rest of the program will compute either identical or
(similarly) equivalent results. This allows the compiler to consider promise_equivalent_
solutions [X, Y] (G) to have determinism det. Likewise, the compiler will consider
promise_equivalent_solutions [X, Y] (G) where G is cc_nondet to have determinism
semidet.

Note that specifying a user-defined equivalence relation as the equality predicate for
user-defined types (see Chapter 8 [User-defined equality and comparison], page 73) means
that ‘promise_equivalent_solutions’ can be used to express more general forms of equiv-
alence. For example, if you define a set type which represents sets as unsorted lists, you
would want to define a user-defined equivalence relation for that type, which could sort
the lists before comparing them. The ‘promise_equivalent_solutions’ determinism cast
could then be used for sets even though the lists used to represent the sets might not be in
the same order in every solution.

7.5 Committed choice nondeterminism

In addition to the determinism annotations described earlier, there are “committed choice”
versions of multi and nondet, called cc_multi and cc_nondet. These can be used instead
of multi or nondet if all calls to that mode of the predicate (or function) occur in a context
in which only one solution is needed.

Such single-solution contexts are determined as follows.

• The body of any procedure declared cc_multi or cc_nondet is in a single-solution
context. For example, the program entry point ‘main/2’ may be declared cc_multi,
and in that case the clauses for main are in a single-solution context.

• Any goal with no output variables is in a single-solution context.

• If a conjunction is in a single-solution context, then the right-most conjunct is in a
single-solution context, and if the right-most conjunct cannot fail, then the rest of the
conjunction is also in a single-solution context. (“Right-most” here refers to the order
after mode reordering.)

Chapter 7: Determinism 72

• If an if-then-else is in a single-solution context, then the “then” part and the “else” part
are in single-solution contexts, and if the “then” part cannot fail, then the condition
of the if-then-else is also in a single-solution context.

• For other compound goals, i.e. disjunctions, negations, and (explicitly) existentially
quantified goals, if the compound goal is in a single-solution context, then the imme-
diate sub-goals of that compound goal are also in single-solution contexts.

The compiler will check that all calls to a committed-choice mode of a predicate (or
function) do indeed occur in a single-solution context.

You can declare two different modes of a predicate (or function) which differ only in
“cc-ness” (i.e. one being multi and the other cc_multi, or one being nondet and the
other cc_nondet). In that case, the compiler will select the appropriate one for each call
depending on whether the call comes from a single-solution context or not. Calls from
single-solution contexts will call the committed choice version, while calls which are not
from single-solution contexts will call the backtracking version.

There are several reasons to use committed choice determinism annotations. One reason
is for efficiency: committed choice annotations allow the compiler to generate much more
efficient code. Another reason is for doing I/O, which is allowed only in det or cc_multi
predicates, not in multi predicates. Another is for dealing with types that use non-canonical
representations (see Chapter 8 [User-defined equality and comparison], page 73). And there
are a variety of other applications.

Chapter 8: User-defined equality and comparison 73

8 User-defined equality and comparison

When defining abstract data types, often it is convenient to use a non-canonical represen-
tation — that is, one for which a single abstract value may have more than one different
possible concrete representation. For example, you may wish to implement an abstract type
‘set’ by representing a set as an (unsorted) list.

:- module set_as_unsorted_list.

:- interface.

:- type set(T).

:- implementation.

:- import_module list.

:- type set(T)

---> set(list(T)).

In this example, the concrete representations ‘set([1,2])’ and ‘set([2,1])’ would both
represent the same abstract value, namely the set containing the elements 1 and 2.

For types such as this, which do not have a canonical representation, the standard
definition of equality is not the desired one; we want equality on sets to mean equality of
the abstract values, not equality of their representations. To support such types, Mercury
allows programmers to specify a user-defined equality predicate for user-defined types (not
including subtypes):

:- type set(T)

---> set(list(T))

where equality is set_equals.

Here ‘set_equals’ is the name of a user-defined predicate that is used for equality on the
type ‘set(T)’. It could for example be defined in terms of a ‘subset’ predicate.

:- pred set_equals(set(T)::in, set(T)::in) is semidet.

set_equals(S1, S2) :-

subset(S1, S2),

subset(S2, S1).

A comparison predicate can also be supplied.

:- type set(T)

---> set(list(T))

where equality is set_equals, comparison is set_compare.

:- pred set_compare(builtin.comparison_result::uo,

set(T)::in, set(T)::in) is det.

set_compare(Result, Set1, Set2) :-

promise_equivalent_solutions [Result] (

set_compare_2(Set1, Set2, Result)

).

:- pred set_compare_2(set(T)::in, set(T)::in,

builtin.comparison_result::uo) is cc_multi.

Chapter 8: User-defined equality and comparison 74

set_compare_2(set(List1), set(List2), Result) :-

builtin.compare(Result, list.sort(List1), list.sort(List2)).

If a comparison predicate is supplied and the unification predicate is omitted, a unifica-
tion predicate is generated by the compiler in terms of the comparison predicate. For the
‘set’ example, the generated predicate would be:

set_equals(S1, S2) :-

set_compare((=), S1, S2).

If a unification predicate is supplied without a comparison predicate, the
compiler will generate a comparison predicate which throws an exception of type
‘exception.software_error’ when called.

A type declaration for a type ‘foo(T1, ..., TN)’ may contain a ‘where equality is

equalitypred ’ specification only if it declares a discriminated union type or a foreign type
(see Section 16.4 [Using foreign types from Mercury], page 128) and the following conditions
are satisfied:

• equalitypred must be the name of a predicate with signature

:- pred equalitypred(foo(T1, ..., TN)::in,

foo(T1, ..., TN)::in) is semidet.

It is legal for the type, mode and determinism to be more permissive: the type or
the mode’s initial insts may be more general (e.g. the type of the equality predicate
could be just the polymorphic type ‘pred(T, T)’) and the mode’s final insts or the
determinism may be more specific (e.g. the determinism of the equality predicate could
be any of det, failure or erroneous).

• If the type is a discriminated union then its definition cannot be a single zero-arity
constructor.

• The equality predicate must be “pure” (see Chapter 17 [Impurity], page 146).

• The equality predicate must be defined in the same module as the type.

• If the type is exported the equality predicate must also be exported.

• equalitypred should be an equivalence relation; that is, it must be symmetric, reflexive,
and transitive. However, the compiler is not required to check this1.

Types with user-defined equality can only be used in limited ways. Because there are
multiple representations for the same abstract value, any attempt to examine the repre-
sentation of such a value is a conceptually non-deterministic operation. In Mercury this is
modelled using committed choice nondeterminism.

The semantics of specifying ‘where equality is equalitypred ’ on the type declaration
for a type T are as follows:

• If the program contains any deconstruction unification or switch on a variable of type T
that could fail, other than unifications with mode ‘(in, in)’, then it is a compile-time
error.

1 If equalitypred is not an equivalence relation, then the program is inconsistent: its declarative semantics
contains a contradiction, because the additional axioms for the user-defined equality contradict the
standard equality axioms. That implies that the implementation may compute any answer at all (see
Chapter 15 [Formal semantics], page 115), i.e. the behaviour of the program is undefined.

Chapter 8: User-defined equality and comparison 75

• If the program contains any deconstruction unification or switch on a variable of type
T that cannot fail, then that operation has determinism cc_multi.

• Any attempts to examine the representation of a variable of type T using facilities of
the standard library (e.g. ‘argument’/3 and ‘functor/3’ in ‘deconstruct’) that do not
have determinism cc_multi or cc_nondet will result in a run-time error.

• In addition to the usual equality axioms, the declarative semantics of the program will
contain the axiom ‘X = Y <=> equalitypred(X, Y)’ for all X and Y of type ‘T’.

• Any ‘(in, in)’ unifications for type T are computed using the specified predicate
equalitypred.

A type declaration for a type ‘foo(T1, ..., TN)’ may contain a ‘where comparison is

comparepred ’ specification only if it declares a discriminated union type or a foreign type
(see Section 16.4 [Using foreign types from Mercury], page 128) and the following conditions
are satisfied:

• comparepred must be the name of a predicate with signature

:- pred comparepred(builtin.comparison_result::uo,

foo(T1, ..., TN)::in, foo(T1, ..., TN)::in) is det.

As with equality predicates, it is legal for the type, mode and determinism to be more
permissive.

• If the type is a discriminated union then its definition cannot be a single zero-arity
constructor.

• The comparison predicate must also be “pure” (see Chapter 17 [Impurity], page 146).

• The comparison predicate must be defined in the same module as the type.

• If the type is exported the comparison predicate must also be exported.

• The relation

compare_eq(X, Y) :- comparepred((=), X, Y).

must be an equivalence relation; that is, it must be symmetric, reflexive, and transitive.
The compiler is not required to check this.

• The relations

compare_leq(X, Y) :- comparepred(R, X, Y), (R = (=) ; R = (<)).

compare_geq(X, Y) :- comparepred(R, X, Y), (R = (=) ; R = (>)).

must be total order relations: that is they must be antisymmetric, reflexive and tran-
sitive. The compiler is not required to check this.

For each type for which the declaration has a ‘where comparison is comparepred ’ spec-
ification, any calls to the standard library predicate ‘builtin.compare/3’ with arguments
of that type are evaluated as if they were calls to comparepred.

A type declaration may contain a ‘where equality is equalitypred, comparison is

comparepred ’ specification only if in addition to the conditions above, ‘all [X, Y] (com-

parepred((=), X, Y) <=> equalitypred(X, Y))’. The compiler is not required to check
this.

Chapter 9: Higher-order programming 76

9 Higher-order programming

Mercury supports higher-order functions and predicates with currying, closures, and lambda
expressions. (To be pedantic, it would be more accurate to say that Mercury supports
higher-order procedures: in Mercury, when you construct a higher-order term, you only get
one mode of a predicate or function; if you want multiple modes, you must pass multiple
higher-order procedures.)

9.1 Creating higher-order terms

To create a higher-order predicate or function term, you can use a lambda expression, or,
if the predicate or function has only one mode and it is not a zero-arity function, you can
just use its name. For example, if you have declared a predicate

:- pred sum(list(int), int).

:- mode sum(in, out) is det.

the following unifications have the same effect:

X = (pred(List::in, Length::out) is det :- sum(List, Length))

Y = sum

In the above example, the type of X, and Y is ‘pred(list(int), int)’, which means a
predicate of two arguments of types list(int) and int respectively.

Similarly, given

:- func scalar_product(int, list(int)) = list(int).

:- mode scalar_product(in, in) = out is det.

the following three unifications have the same effect:

X = (func(Num, List) = NewList :- NewList = scalar_product(Num, List))

Y = (func(Num::in, List::in) = (NewList::out) is det

:- NewList = scalar_product(Num, List))

Z = scalar_product

In the above example, the type of X, Y, and Z is ‘func(int, list(int)) = list(int)’,
which means a function of two arguments, whose types are int and list(int), with a
return type of int. As with ‘:- func’ declarations, if the modes and determinism of the
function are omitted in a higher-order function term, then the modes default to in for the
arguments, out for the function result, and the determinism defaults to det.

The Melbourne Mercury implementation currently requires that you use an explicit
lambda expression to specify which mode you want, if the predicate or function has more
than one mode (but see below for an exception to this rule).

You can also create higher-order function terms of non-zero arity and higher-order pred-
icate terms by “currying”, i.e. specifying the first few arguments to a predicate or function,
but leaving the remaining arguments unspecified. For example, the unification

Sum123 = sum([1,2,3])

binds Sum123 to a higher-order predicate term of type ‘pred(int)’. Similarly, the unification

Double = scalar_product(2)

binds Double to a higher-order function term of type ‘func(list(int)) = list(int)’.

Chapter 9: Higher-order programming 77

As a special case, currying of a multi-moded predicate or function is allowed provided
that the mode of the predicate or function can be determined from the insts of the higher-
order curried arguments. For example, ‘P = list.foldl(io.write)’ is allowed because the
inst of ‘io.write’ matches exactly one mode of ‘list.foldl’.

For higher-order predicate expressions that thread an accumulator pair, we have syntax
that allows you to use DCG notation in the goal of the expression. For example,

Pred = (pred(Strings::in, Num::out, di, uo) is det -->

io.write_string("The strings are: "),

{ list.length(Strings, Num) },

io.write_strings(Strings),

io.nl

)

is equivalent to

Pred = (pred(Strings::in, Num::out, IO0::di, IO::uo) is det :-

io.write_string("The strings are: ", IO0, IO1),

list.length(Strings, Num),

io.write_strings(Strings, IO1, IO2),

io.nl(IO2, IO)

)

Higher-order function terms of zero arity can only be created using an explicit lambda
expression; you have to use e.g. ‘(func) = foo’ rather than plain ‘foo’, because the latter
denotes the result of evaluating the function, rather than the function itself.

Note that when constructing a higher-order term, you cannot just use the name of a
builtin language construct such as ‘=’, ‘\=’, ‘call’, or ‘apply’, and nor can such constructs
be curried. Instead, you must either use an explicit lambda expression, or you must write
a forwarding predicate or function. For example, instead of

list.filter(\=(2), [1, 2, 3], List)

you must write either

list.filter((pred(X::in) is semidet :- X \= 2), [1, 2, 3], List)

or

list.filter(not_equal(2), [1, 2, 3], List)

where you have defined ‘not_equal’ using

:- pred not_equal(T::in, T::in) is semidet.

not_equal(X, Y) :- X \= Y.

Another case when this arises is when want to curry a higher-order term. Suppose,
for example, that you have a higher-order predicate term ‘OldPred’ of type ‘pred(int,
char, float)’, and you want to construct a new higher-order predicate term ‘NewPred’ of
type ‘pred(char, float)’ from ‘OldPred’ by supplying a value for just the first argument.
The solution is the same: use an explicit lambda expression or a forwarding predicate. In
either case, the body of the lambda expression or the forwarding predicate must contain a
higher-order call with all the arguments supplied.

Chapter 9: Higher-order programming 78

9.2 Calling higher-order terms

Once you have created a higher-order predicate term (sometimes known as a closure), the
next thing you want to do is to call it. For predicates, you use the builtin goal call/N:

call(Closure)

call(Closure1, Arg1)

call(Closure2, Arg1, Arg2)

. . . A higher-order predicate call. ‘call(Closure)’ just calls the specified higher-
order predicate term. The other forms append the specified arguments onto
the argument list of the closure before calling it.

For example, the goal

call(Sum123, Result)

would bind Result to the sum of ‘[1, 2, 3]’, i.e. to 6.

For functions, you use the builtin expression apply/N:

apply(Closure)

apply(Closure1, Arg1)

apply(Closure2, Arg1, Arg2)

. . . A higher-order function application. Such a term denotes the result of invoking
the specified higher-order function term with the specified arguments.

For example, given the definition of ‘Double’ above, the goal

List = apply(Double, [1, 2, 3])

would be equivalent to

List = scalar_product(2, [1, 2, 3])

and so for a suitable implementation of the function ‘scalar_product/2’ this would bind
List to ‘[2, 4, 6]’.

One extremely useful higher-order predicate in the Mercury standard library is
‘solutions/2’, which has the following declaration:

:- pred solutions(pred(T), list(T)).

:- mode solutions(pred(out) is nondet, out) is det.

The term which you pass to ‘solutions/2’ is a higher-order predicate term. You can pass
the name of a one-argument predicate, or you can pass a several-argument predicate with all
but one of the arguments supplied (a closure). The declarative semantics of ‘solutions/2’
can be defined as follows:

solutions(Pred, List) is true iff

all [X] (call(Pred, X) <=> list.member(X, List))

and List is sorted.

where ‘call(Pred, X)’ invokes the higher-order predicate term Pred with argument X,
and where ‘list.member/2’ is the standard library predicate for list membership. In other
words, ‘solutions(Pred, List)’ finds all the values of X for which ‘call(Pred, X)’ is true,
collects these solutions in a list, sorts the list, and returns that list as its result. Here is an
example: the standard library defines a predicate ‘list.perm(List0, List)’

Chapter 9: Higher-order programming 79

:- pred list.perm(list(T), list(T)).

:- mode list.perm(in, out) is nondet.

which succeeds iff List is a permutation of List0. Hence the following call to solutions

solutions(list.perm([3,1,2]), L)

should return all the possible permutations of the list ‘[3,1,2]’ in sorted order:

L = [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]].

See also ‘unsorted_solutions/2’ and ‘solutions_set/2’, which are defined in the
standard library module ‘solutions’ and documented in the Mercury Library Reference
Manual.

9.3 Higher-order insts and modes

In Mercury, the mode and determinism of a higher-order predicate or function term are
generally part of that term’s inst, not its type. This allows a single higher-order predicate
to work on argument predicates of different modes and determinism, which is particularly
useful for library predicates such as ‘list.map’ and ‘list.foldl’.

9.3.1 Builtin higher-order insts and modes

The language contains builtin ‘inst’ values

(pred) is Determinism

pred(Mode) is Determinism

pred(Mode1, Mode2) is Determinism

...

(func) = Mode is Determinism

func(Mode1) = Mode is Determinism

func(Mode1, Mode2) = Mode is Determinism

...

These insts represent the instantiation state of variables bound to higher-order predicate
and function terms with the appropriate mode and determinism. For example, ‘pred(out)
is det’ represents the instantiation state of being bound to a higher-order predicate term
which is det and accepts one output argument; the term ‘sum([1,2,3])’ from the example
above is one such higher-order predicate term which matches this instantiation state.

As a convenience, the language also contains builtin ‘mode’ values of the same name (and
they are what we have been using in the examples up to now). These modes map from the
corresponding ‘inst’ to itself. It is as if they were defined by

:- mode (pred is Determinism) == in(pred is Determinism).

:- mode (pred(Inst) is Determinism) ==

in(pred(Inst) is Determinism).

...

using the parametric inst ‘in/1’ mentioned in Chapter 5 [Modes], page 54 which maps an
inst to itself.

If you want to define a predicate which returns a higher-order predicate term, you would
use a mode such as ‘free >> pred(...) is ...’, or ‘out(pred(...) is ...)’. For exam-
ple:

Chapter 9: Higher-order programming 80

:- pred foo(pred(int)).

:- mode foo(free >> (pred(out) is det)) is det.

foo(sum([1,2,3])).

In the above mode declaration, the current Mercury implementation requires parentheses
around the higher-order inst. (This is because the operator ‘>>’ binds more tightly then
the operator ‘is’.)

Note that in Mercury it is an error to attempt to unify two higher-order terms. This is
because equivalence of higher-order terms is undecidable in the general case.

For example, given the definition of ‘foo’ above, the goal

foo((pred(X::out) is det :- X = 6))

is illegal. If you really want to compare higher-order predicates for equivalence, you must
program it yourself; for example, the above goal could legally be written as

P = (pred(X::out) is det :- X = 6),

foo(Q),

all [X] (call(P, X) <=> call(Q, X)).

Note that the compiler will only catch direct attempts at higher-order unifications; in-
direct attempts (via polymorphic predicates, for example ‘(list.append([], [P], [Q])’
may result in an error at run-time rather than at compile-time.

Mercury also provides builtin ‘inst’ values for use with solver types:

any_pred is Determinism

any_pred(Mode) is Determinism

any_pred(Mode1, Mode2) is Determinism

...

any_func = Mode is Determinism

any_func(Mode1) = Mode is Determinism

any_func(Mode1, Mode2) = Mode is Determinism

...

See Chapter 18 [Solver types], page 152 for more details.

9.3.2 Default insts for functions

In order to call a higher-order term, the compiler must know its higher-order inst. This
can cause problems when higher-order terms are placed into a polymorphic collection type
and then extracted, since the declared mode for the extraction will typically be out and
the higher-order inst information will be lost. To partially alleviate this problem, and to
make higher-order functional programming easier, if the term to be called has a function
type, but no higher-order inst information is explicitly provided, we assume that it has the
default higher-order function inst ‘func(in, ..., in) = out is det’.

As a consequence of this, a higher-order function term can only be passed where a term
with no higher-order inst information is expected if it can be passed where a term with the
default higher-order function inst is expected. Higher-order predicate terms can always be
passed to such a place, but note that there is little value in doing so because there is no
default higher-order inst for predicates therefore it will not be possible to call those terms.

Chapter 9: Higher-order programming 81

9.3.3 Combined higher-order types and insts

A higher-order type may optionally specify an inst in the following manner:

(pred) is Determinism

pred(Type::Mode) is Determinism

pred(Type1::Mode1, Type2::Mode2) is Determinism

...

(func) = (Type::Mode) is Determinism

func(Type1::Mode1) = (Type::Mode) is Determinism

func(Type1::Mode1, Type2::Mode2) = (Type::Mode) is Determinism

...

When used as argument types of functors in type declarations, types of this form have
two effects. First, for any unification that constructs a term using such an argument, there
is an additional mode constraint that the argument must be approximated by the inst. In
other words, to be mode correct a program must not construct any term where a functor
has an argument that does not have the declared inst, if present.

The second effect is that when a unification deconstructs a ground term to extract an
argument with such a declared inst, the extracted argument may then be used as if it had
that inst.

For example, given this type declaration:

:- type job

---> job(pred(int::out, io::di, io::uo) is det).

the following goal is correct:

:- pred run(job::in, io::di, io::uo) is det.

run(Job, !IO) :-

Job = job(Pred),

Pred(Result, !IO), % Pred has the necessary inst

write_line(Result, !IO).

However, the following would be a mode error:

:- pred bad(job::out) is det.

bad(job(p)). % Error: p does not have required mode

:- pred p(int::in, io::di, io::out) is det.

...

As a new feature, combined higher-order types and insts are only permitted as direct
arguments of functors in discriminated unions. So the following examples currently result
in errors.

% Error: use on the RHS of equivalence types.

:- type p == (pred(io::di, io::uo) is det).

:- type f == (func(int::in) = (int::out) is semidet).

% Error: use inside a type constructor.

:- type jobs

---> jobs(list(pred(int::out, io::di, io::uo) is det)).

Chapter 9: Higher-order programming 82

% Error: use in a pred/func declaration.

:- pred p((pred(io::di, io::uo) is det)::in, io::di, io::uo) is det.

:- func f(func(int::in) = (int::out) is semidet, int) = int.

Future versions of the language may allow these forms.

Chapter 10: Modules 83

10 Modules

10.1 The module system

The Mercury module system is relatively simple and straightforward.

Each module must start with a ‘:- module ModuleName ’ declaration, specifying the name
of the module.

An ‘:- interface.’ declaration indicates the start of the module’s interface section: this
section specifies the entities that are exported by this module. Mercury provides support
for abstract data types, by allowing the definition of a type to be kept hidden, with the
interface only exporting the type name. The interface section may contain definitions of
types, type classes, data constructors, instantiation states, and modes, and declarations for
abstract data types, abstract type class instances, functions, predicates, and (sub-)modules.
The interface section may not contain definitions for functions or predicates (i.e. clauses),
or definitions of (sub-)modules.

An ‘:- implementation.’ declaration indicates the start of the module’s implementation
section. Any entities declared in this section are local to the module (and its submodules,
if any) and cannot be used by other modules. The implementation section must contain
definitions for all abstract data types, abstract instance declarations, functions, predicates,
and submodules exported by the module, as well as for all local types, type class instances,
functions, predicates, and submodules. The implementation section can be omitted if it is
empty.

The module may optionally end with a ‘:- end_module ModuleName ’ declaration; the
name specified in the ‘end_module’ must be the same as that in the corresponding ‘module’
declaration.

If a module wishes to make use of entities exported by other modules, then it must
explicitly import those modules using one or more ‘:- import_module Modules ’ or
‘:- use_module Modules ’ declarations, in order to make those declarations visible. In
both cases, Modules is a comma-separated list of fully qualified module names. These
declarations may occur either in the interface or the implementation section. If the
imported entities are used in the interface section, then the corresponding import_module

or use_module declaration must also be in the interface section. If the imported entities are
only used in the implementation section, the import_module or use_module declaration
should be in the implementation section.

The names of predicates, functions, constructors, constructor fields, types, modes, insts,
type classes, and (sub-)modules can be explicitly module qualified using the ‘.’ operator,
e.g. ‘module.name’ or ‘module.submodule.name’. This is useful both for readability and
for resolving name conflicts. Uses of entities imported using use_module declarations must

be explicitly fully module qualified.

Currently we also support ‘__’ as an alternative module qualifier, so you can write
module__name instead of module.name.

Certain optimizations require information or source code for predicates defined in other
modules to be as effective as possible. At the moment, inlining and higher-order special-
ization are the only optimizations that the Mercury compiler can perform across module
boundaries.

Chapter 10: Modules 84

Exactly one module of the program must export a predicate ‘main/2’, which must be
declared as either

:- pred main(io.state::di, io.state::uo) is det.

or

:- pred main(io.state::di, io.state::uo) is cc_multi.

(or any declaration equivalent to one of the two above).

Mercury has a standard library which includes over 100 modules, including modules for
lists, stacks, queues, priority queues, sets, bags (multi-sets), maps (dictionaries), random
number generation, input/output, and filename and directory handling. See the Mercury
Library Reference Manual for a list of the available modules, and for the documentation of
each module.

10.2 An example module

For illustrative purposes, here is the definition of a simple module for managing queues:

:- module queue.

:- interface.

% Declare an abstract data type.

:- type queue(T).

% Declare some predicates which operate on the abstract data type.

:- pred empty_queue(queue(T)).

:- mode empty_queue(out) is det.

:- mode empty_queue(in) is semidet.

:- pred put(queue(T), T, queue(T)).

:- mode put(in, in, out) is det.

:- pred get(queue(T), T, queue(T)).

:- mode get(in, out, out) is semidet.

:- implementation.

% Queues are implemented as lists. We need the ‘list’ module

% for the declaration of the type list(T), with its constructors

% ’[]’/0 % and ’.’/2, and for the declaration of the predicate

% list.append/3.

:- import_module list.

% Define the queue ADT.

:- type queue(T) == list(T).

Chapter 10: Modules 85

% Define the exported predicates.

empty_queue([]).

put(Queue0, Elem, Queue) :-

list.append(Queue0, [Elem], Queue).

get([Elem | Queue], Elem, Queue).

:- end_module queue.

10.3 Submodules

As mentioned above, modules may contain submodules. There are two kinds of submodules,
called nested submodules and separate submodules; the difference is that nested submodules
are defined in the same source file as the containing module, whereas separate submodules
are defined in separate source files. Implementations should support separate compilation
of separate submodules.

A module may not contain more than one submodule with the same name.

10.3.1 Nested submodules

Nested submodules within a module are delimited by matching ‘:- module’ and ‘:-
end_module’ declarations. (Note that ‘:- end_module’ for nested submodules are
mandatory, not optional, even if the nested submodule is the last thing in the source file.
The module name in a ‘:- module’ or ‘:- end_module’ declaration for a nested submodule
need not be fully qualified.) The sequence of items thus delimited is known as a submodule
item sequence.

The interface and implementation parts of a nested submodule may be specified in
two different submodule declarations. If a submodule item sequence includes an interface
section, then it is a declaration of that submodule; if it includes an implementation section,
then it is a definition of that submodule; and if includes both, then it is both declaration
and definition.

It is an error to declare a submodule twice, or to define it twice. It is an error to define a
submodule without declaring it. As mentioned earlier, it is an error to define a submodule
in the interface section of its parent module.

If a submodule is declared but not explicitly defined, then there is an implicit definition
with an empty implementation section for that submodule. This empty implementation
section will result in an error if the interface section of a submodule contains any of the
following:

• a declaration for a function or a predicate;

• an abstract declaration for a type, inst, mode or typeclass, i.e. a declaration that does
not itself serve as a definition of that type, inst, mode or typeclass;

• an abstract declaration of a typeclass instance; or

• a (doubly, triply, etc) nested submodule (which perforce has only an interface section,
and no implementation section) and which contains any of the above.

Chapter 10: Modules 86

10.3.2 Separate submodules

Separate submodules are declared using ‘:- include_module Modules ’ declarations. Each
‘:- include_module’ declaration specifies a comma-separated list of submodules.

:- include_module Module1, Module2, ..., ModuleN.

The module names need not be fully qualified.

Each of the named submodules in an ‘:- include_module’ declaration must be defined
in a separate source file. The mapping between module names and source file names is
implementation-defined. The Melbourne Mercury implementation requires that

• either every module must be in a file whose name is the fully qualified module name
followed by ‘.m’, (so a module named e.g. ‘foo.bar.baz’, must be in a file named
‘foo.bar.baz.m’)

• or that the programmer tell the implementation about which files contain which mod-
ules using a command such as ‘mmc -f *.m’. (Alternatively, you could replace the
‘*.m’ in that command with a list of the file names of all the Mercury modules in the
program.)

The source file of a separate submodule must contain the declaration (interface) and
definition (implementation) of the submodule. It must start with a ‘:- module’ declaration
containing the fully qualified module name, followed by the interface and (if necessary)
implementation sections, and it may optionally end with a ‘:- end_module’ declaration.
(The module name in the ‘:- end_module’ declaration need not be fully qualified.)

The semantics of separate submodules are identical to those of nested submodules. The
procedure to transform a separate submodule into a nested submodule is as follows:

1. Replace the ‘:- include_module submodule ’ declaration with the interface section of
the submodule enclosed within ‘:- module submodule ’ and ‘:- end_module submod-

ule ’ declarations.

2. Place the implementation section of the submodule enclosed within ‘:- module sub-

module ’ and ‘:- end_module submodule ’ declarations in the implementation section
of the parent module.

For example

:- module x.

:- interface.

:- include_module y.

:- end_module x.

is equivalent to

:- module x.

:- interface.

:- module y.

% interface section of module ‘y’

:- end_module y.

:- implementation.

:- module y.

% implementation section of module ‘y’

:- end_module y.

:- end_module x.

Chapter 10: Modules 87

10.3.3 Visibility rules

Any declarations in the parent module, including those in the parent module’s implemen-
tation section, are visible in the parent’s submodules, including indirect submodules (i.e.
sub-submodules, etc.). Similarly, declarations in the interfaces of any modules imported
using an ‘:- import_module’ or a ‘:- use_module’ in the parent module are visible in the
parent’s submodules, including indirect submodules.

Declarations in a child module are not visible in the parent module, or in “sibling”
modules (other children of the same parent), or in other unrelated modules unless the child
is explicitly imported using an ‘:- import_module’ or ‘:- use_module’ declaration. It is
an error to import a module without importing all of its parent modules.

Note that a submodule for which the ‘:- module’ or ‘:- include_module’ declaration
occurs only in the implementation section of the parent module may only be imported or
used by its parent module or by submodules of its parent module.

As mentioned previously, all ‘:- import_module’ and ‘:- use_module’ declarations must
use fully qualified module names.

10.3.4 Implementation bugs and limitations

The current implementation of submodules has a couple of minor limitations.

• The compiler sometimes reports spurious errors if you define an equivalence type in a
submodule and export it as an abstract type.

• Using ‘mmake’ to do parallel makes (e.g. ‘mmake --jobs 2’) doesn’t always work cor-
rectly if you are using nested submodules. (The work-around is to use separate sub-
modules instead of nested submodules, i.e. to put the submodules in separate source
files.)

10.4 Module initialisation

Modules that interact with foreign libraries or services may require special initialisation
before use. Such modules may include any number of ‘initialise’ directives in their
implementation sections. An ‘initialise’ directive has the following form:

:- initialise initpredname/arity.

where the predicate initpredname must be declared with one of the following signatures:

:- pred initpredname(io::di, io::uo) is Det.

:- impure pred initpredname is Det.

Det must be either det or cc_multi.

The effect of the ‘initialise’ declaration is to ensure that ‘initpredname/arity ’ is
invoked before the program’s ‘main/2’ predicate. Initialisation predicates within a module
are executed in the order in which they are specified, although no order may be assumed
between different modules or submodules. Initialisation predicates are only invoked after
any initialisation required by the Mercury standard library.

If ‘initpredname/arity ’ terminates with an uncaught exception then the program will
immediately abort execution. In this circumstance, those predicates specified by other
‘initialise’ directives that have not yet been executed will not be executed, ‘main/2’ will
not be executed, and no predicate specified in a ‘finalise’ directive will be executed.

‘initialize’ is also allowed as a synonym for ‘initialise’.

Chapter 10: Modules 88

10.5 Module finalisation

Modules that require special finalisation at program termination may include any number
of ‘finalise’ directives in their implementation sections.

A ‘finalise’ directive has the following form:

:- finalise finalpredname/arity.

where the predicate ‘finalpredname/arity’ must be declared with one of the following
signatures:

:- pred finalpredname(io::di, io::uo) is Det.

:- impure pred finalpredname is Det

Det must be either det or cc_multi.

The effect of the ‘finalise’ declaration is to ensure that ‘finalpredname/arity ’ is
invoked after the program’s ‘main’ predicate. Finalisation predicates within a module are
executed in the order in which they are specified, although no order may be assumed between
different modules or submodules. Any finalisation required by the Mercury standard library
will always occur after any finalisation predicates have been invoked.

If ‘finalpredname/arity ’ terminates with an uncaught exception, then the program
will immediately abort execution. No predicates specified by other ‘finalise’ directives
that have not yet been executed will be executed. If the program’s ‘main/2’ predicate
terminates with an uncaught exception, then no finalisation predicates will be executed.

‘finalize’ is also allowed as a synonym for ‘finalise’.

10.6 Module-local mutable variables

Certain special cases require a module to have one or more mutable (i.e. destructively
updatable) variables, for example to hold the constraint store for a solver type.

A mutable variable is declared using the ‘mutable’ directive:

:- mutable(varname, vartype, initial_value, varinst, [attribute, ...]).

This constructs a new mutable variable with access predicates that have the following
signatures:

:- semipure pred get_varname(vartype::out(varinst)) is det.

:- impure pred set_varname(vartype::in(varinst)) is det.

The initial value of varname is initial value, which is set before the program’s ‘main/2’
predicate is executed.

The type vartype is not allowed to contain any type variables or have any type class
constraints.

The inst varinst is not allowed to contain any inst variables. It is also not allowed to be
equivalent to, or contain components that are equivalent to, the builtin insts free, unique,
mostly_unique, dead (clobbered) or mostly_dead (mostly_clobbered).

The initial value of a mutable, initial value, may be any Mercury expression with type
vartype and inst varinst subject to the above restrictions. It may be impure or semipure.

The following attributes are supported:

Chapter 10: Modules 89

‘trailed’/‘untrailed’
This attribute specifies whether the implementation should generate code
to undo the effects of ‘set_varname/1’ on backtracking (‘trailed’) or not
(‘untrailed’). The default, in case none is specified, is ‘trailed’.

‘attach_to_io_state’
This attribute causes the compiler to also construct access predicates that have
the following signatures:

:- pred get_varname(vartype::out(varinst), io::di, io::uo) is det.

:- pred set_varname(vartype::in(varinst), io::di, io::uo) is det.

‘constant’
This attribute causes the compiler to construct only a ‘get’ access predicate,
but not a ‘set’ access predicate. Since varname will always have the initial
value given to it, the ‘get’ access predicate is pure; its signature will be:

:- pred get_varname(vartype::out(varinst)) is det.

The ‘constant’ attribute cannot be specified together with the
‘attach_to_io_state’ attribute (since they disagree on this signature). It
also cannot be specified together with an explicit ‘trailed’ attribute.

The Melbourne Mercury compiler also supports the following attributes:

‘foreign_name(Lang, Name)’
Allow foreign code to access the mutable variable in some implementation de-
pendent manner. Lang must be a valid target language for this Mercury im-
plementation. Name must be a valid identifier in that language. It is an error
to specify more than one foreign name attribute for each language.

For the C backends, this attribute allows foreign code to access the mutable
variable as an external variable called Name. For the low-level C backend, e.g.
the asm fast grades, the type of this variable will be MR_Word. For the high-
level C backend, e.g. the hlc grades, the type of this variable depends upon the
Mercury type of the mutable. For mutables of a Mercury primitive type, the
corresponding C type is given by the mapping in Section 16.3.1 [C data passing
conventions], page 122. For mutables of any other type, the corresponding C
type will be MR_Word.

This attribute is not currently implemented for the non-C backends.

‘thread_local’
This attribute allows a mutable to take on different values in each thread. When
a child thread is spawned, it inherits all the values of thread-local mutables of
the parent thread. Changing the value of a thread-local mutable does not affect
its value in any other threads.

The ‘thread_local’ attribute cannot be specified together with either of the
‘trailed’ or ‘constant’ attributes.

It is an error for a ‘mutable’ directive to appear in the interface section of a module.
The usual visibility rules for submodules apply to the mutable variable access predicates.

For the purposes of determining when mutables are assigned their initial values, the
expression initial value behaves as though it were a predicate specified in an ‘initialise’
directive.

Chapter 10: Modules 90

:- initialise foo/2.

:- mutable(bar, int, 561, ground, [untrailed]).

:- initialise baz/2.

In the above example,

• ‘foo/2’ will be invoked first,

• then ‘bar’ will be set to its initial value of 561,

• and then ‘baz/2’ will be invoked.

The effect of a mutable initial value expression terminating with an uncaught exception
is also the same as though it were a predicate specified in an ‘initialise’ directive.

Chapter 11: Type classes 91

11 Type classes

Mercury supports constrained polymorphism in the form of type classes. Type classes allow
the programmer to write predicates and functions which operate on variables of any type
(or sequence of types) for which a certain set of operations is defined.

11.1 Typeclass declarations

A type class is a name for a set of types (or a set of sequences of types) for which cer-
tain predicates and/or functions, called the methods of that type class, are defined. A
‘typeclass’ declaration defines a new type class, and specifies the set of predicates and/or
functions that must be defined on a type (or sequence of types) for it (them) to be considered
to be an instance of that type class.

The typeclass declaration gives the name of the type class that it is defining, the
names of the type variables which are parameters to the type class, and the operations (i.e.
methods) which form the interface of the type class. For each method, all parameters of the
typeclass must be determined by the type variables appearing in the type signature of the
method. A variable is determined by a type signature if it appears in the type signature,
but if functional dependencies are present, then it may also be determined from the other
variables (see Section 11.8 [Functional dependencies], page 98).

For example,

:- typeclass point(T) where [

% coords(Point, X, Y):

% X and Y are the cartesian coordinates of Point

pred coords(T, float, float),

mode coords(in, out, out) is det,

% translate(Point, X_Offset, Y_Offset) = NewPoint:

% NewPoint is Point translated X_Offset units in the X direction

% and Y_Offset units in the Y direction

func translate(T, float, float) = T

].

declares the type class point, which represents points in two dimensional space.

pred, func and mode declarations are the only legal declarations inside a typeclass

declaration. The mode and determinism of type class methods must be explicitly declared
or (for functions) defaulted, not inferred. In other words, for each predicate declared in a
type class, there must be at least one mode declaration, and each mode declaration in a
type class must include an explicit determinism annotation. Functions with no explicit mode
declaration get the usual default mode (see Chapter 5 [Modes], page 54): all arguments have
mode in, the result has mode out, and the determinism is det.

The number of parameters to the type class (e.g. T) is not limited. For example, the
following is allowed:

:- typeclass a(T1, T2) where [...].

The parameters must be distinct variables. Each typeclass declaration must have at
least one parameter.

It is legal for a typeclass declaration to declare no methods, for example

Chapter 11: Type classes 92

:- typeclass foo(T) where [].

There must not be more than one type class declaration with the same name and arity
in the same module.

11.2 Instance declarations

Once the interface of the type class has been defined in the typeclass declaration, we can
use an instance declaration to define how a particular type (or sequence of types) satisfies
the interface declared in the typeclass declaration.

An instance declaration has the form

:- instance classname(typename(typevar, ...), ...)

where [method_definition, method_definition, ...].

An ‘instance’ declaration gives a type for each parameter of the type class. Each of these
types must be either a type with no arguments, or a polymorphic type whose arguments
are all type variables. For example int, list(T), bintree(K, V) and bintree(T, T) are
allowed, but T and list(int) are not. The types in an instance declaration must not
be abstract types which are elsewhere defined as equivalence types. A program may not
contain more than one instance declaration for a particular type (or sequence of types, in
the case of a multi-parameter type class) and typeclass. These restrictions ensure that there
are no overlapping instance declarations, i.e. for each typeclass there is at most one instance
declaration that may be applied to any type (or sequence of types).

There is no special interaction between subtypes and the typeclass system. A subtype
is not automatically an instance of a typeclass if there is an ‘instance’ declaration for its
supertype.

Each method definition entry in the ‘where [...]’ part of an instance declaration
defines the implementation of one of the class methods for this instance. There are two
ways of defining methods.

The first way to define a method is by giving the name of the predicate or function
which implements that method. In this case, the method definition must have one of the
following forms:

pred(method_name/arity) is predname

func(method_name/arity) is funcname

The predname or funcname must name a predicate or function of the specified arity whose
type, modes, determinism, and purity are at least as permissive as the declared type, modes,
determinism, and purity of the class method with the specified method name and arity,
after the types of the arguments in the instance declaration have been substituted in place
of the parameters in the type class declaration.

The second way of defining methods is by listing the clauses for the definition inside
the instance declaration. A method definition can be a clause. These clauses are just
like the clauses used to define ordinary predicates or functions (see Section 2.4 [Items],
page 12), and so they can be facts, rules, or DCG rules. The only difference is that in
instance declarations, clauses are separated by commas rather than being terminated by
periods, and so rules and DCG rules in instance declarations must normally be enclosed
in parentheses. As with ordinary predicates, you can have more than one clause for each
method. The clauses must satisfy the declared type, modes, determinism and purity for the

Chapter 11: Type classes 93

method, after the types of the arguments in the instance declaration have been substituted
in place of the parameters in the type class declaration.

These two ways are mutually exclusive: each method must be defined either by a single
naming definition (using the ‘pred(...) is predname ’ or ‘func(...) is funcname ’ form),
or by a set of one or more clauses, but not both.

Here is an example of an instance declaration and the different kinds of method defini-
tions that it can contain:

:- typeclass foo(T) where [

func method1(T, T) = int,

func method2(T) = int,

pred method3(T::in, int::out) is det,

pred method4(T::in, io.state::di, io.state::uo) is det,

func method5(bool, T) = T

].

:- instance foo(int) where [

% method defined by naming the implementation

func(method1/2) is (+),

% method defined by a fact

method2(X) = X + 1,

% method defined by a rule

(method3(X, Y) :- Y = X + 2),

% method defined by a DCG rule

(method4(X) --> io.print(X), io.nl),

% method defined by multiple clauses

method5(no, _) = 0,

(method5(yes, X) = Y :- X + Y = 0)

].

Each ‘instance’ declaration must define an implementation for every method declared
in the corresponding ‘typeclass’ declaration. It is an error to define more than one imple-
mentation for the same method within a single ‘instance’ declaration.

Any call to a method must have argument types (and in the case of functions, return
type) which are constrained to be a member of that method’s type class, or which match
one of the instance declarations visible at the point of the call. A method call will invoke
the predicate or function specified for that method in the instance declaration that matches
the types of the arguments to the call.

Note that even if a type class has no methods, an explicit instance declaration is required
for a type to be considered an instance of that type class.

Here is an example of some code using an instance declaration:

:- type coordinate

---> coordinate(

Chapter 11: Type classes 94

float, % X coordinate

float % Y coordinate

).

:- instance point(coordinate) where [

pred(coords/3) is coordinate_coords,

func(translate/3) is coordinate_translate

].

:- pred coordinate_coords(coordinate, float, float).

:- mode coordinate_coords(in, out, out) is det.

coordinate_coords(coordinate(X, Y), X, Y).

:- func coordinate_translate(coordinate, float, float) = coordinate.

coordinate_translate(coordinate(X, Y), Dx, Dy) = coordinate(X + Dx, Y + Dy).

We have now made the coordinate type an instance of the point type class. If we
introduce a new type coloured_coordinate which represents a point in two dimensional
space with a colour associated with it, it can also become an instance of the type class:

:- type rgb

---> rgb(

int,

int,

int

).

:- type coloured_coordinate

---> coloured_coordinate(

float,

float,

rgb

).

:- instance point(coloured_coordinate) where [

pred(coords/3) is coloured_coordinate_coords,

func(translate/3) is coloured_coordinate_translate

].

:- pred coloured_coordinate_coords(coloured_coordinate, float, float).

:- mode coloured_coordinate_coords(in, out, out) is det.

coloured_coordinate_coords(coloured_coordinate(X, Y, _), X, Y).

:- func coloured_coordinate_translate(coloured_coordinate, float, float)

= coloured_coordinate.

Chapter 11: Type classes 95

coloured_coordinate_translate(coloured_coordinate(X, Y, Colour), Dx, Dy)

= coloured_coordinate(X + Dx, Y + Dy, Colour).

If we call ‘translate/3’ with the first argument having type ‘coloured_coordinate’,
this will invoke ‘coloured_coordinate_translate’. Likewise, if we call ‘translate/3’
with the first argument having type ‘coordinate’, this will invoke ‘coordinate_translate’.

Further instances of the type class could be made, e.g. a type that represents the point
using polar coordinates.

Since methods may be defined using clauses, and the interface sections of modules may
not include clauses, instance declarations that specify method definitions may appear only
in the implementation section of a module. If you want to export the knowledge that a
type, or a sequence of types, is a member of a given typeclass, then put a version of the
instance declaration that omits all method definitions (see Section 11.4 [Abstract instance
declarations], page 95) into the interface section of the module that contains the full instance
declaration in its implementation section.

11.3 Abstract typeclass declarations

Abstract typeclass declarations are typeclass declarations whose definitions are hidden. An
abstract typeclass declaration has the same form as a typeclass declaration, but without the
‘where[...]’ part. An abstract typeclass declaration defines a name for a set of (sequences
of) types, but does not define what methods must be implemented for instances of the type
class.

Like abstract type declarations, abstract typeclass declarations are only useful in the
interface section of a module. Each abstract typeclass declaration must be accompanied by
a corresponding non-abstract typeclass declaration that defines the methods for that type
class.

Non-abstract instance declarations can only be made in scopes where the non-abstract
typeclass declaration is visible.

11.4 Abstract instance declarations

Abstract instance declarations are instance declarations whose implementations are hidden.
An abstract instance declaration has the same form as an instance declaration, but without
the ‘where [...]’ part. An abstract instance declaration declares that a sequence of types
is an instance of a particular type class without defining how the type class methods are
implemented for those types. Like abstract type declarations, abstract instance declarations
are only useful in the interface section of a module. Each abstract instance declaration must
be accompanied in the implementation section of the same module by a corresponding non-
abstract instance declaration that defines how the type class methods are implemented.

Here is an example:

:- module hashable.

:- interface.

:- import_module int, string.

:- typeclass hashable(T) where [func hash(T) = int].

Chapter 11: Type classes 96

:- instance hashable(int).

:- instance hashable(string).

:- implementation.

:- instance hashable(int) where [func(hash/1) is hash_int].

:- instance hashable(string) where [func(hash/1) is hash_string].

:- func hash_int(int) = int.

hash_int(X) = X.

:- func hash_string(string) = int.

hash_string(S) = H :-

% Use the standard library predicate string.hash/2.

string.hash(S, H).

:- end_module hashable.

11.5 Type class constraints on predicates and functions

Mercury allows a type class constraint to appear as part of a predicate or function’s type
signature. This constrains the values that can be taken by type variables in the signature
to belong to particular type classes.

A type class constraint has the form:

<= Typeclass(Type, ...), ...

where Typeclass is the name of a type class and Type is a type. Any variable that appears
in Type must be determined by the predicate’s or function’s type signature. A variable is
determined by a type signature if it appears in the type signature, but if functional depen-
dencies are present, then it may also be determined from other variables (see Section 11.8
[Functional dependencies], page 98). Each type class constraint in a predicate or function
declaration must contain at least one variable.

For example

:- pred distance(P1, P2, float) <= (point(P1), point(P2)).

:- mode distance(in, in, out) is det.

distance(A, B, Distance) :-

coords(A, Xa, Ya),

coords(B, Xb, Yb),

XDist = Xa - Xb,

YDist = Ya - Yb,

Distance = sqrt(XDist*XDist + YDist*YDist).

In the above example, the distance predicate is able to calculate the distance between
any two points, regardless of their representation, as long as the coords operation has been
defined. These constraints are checked at compile time.

Chapter 11: Type classes 97

11.6 Type class constraints on type class declarations

Type class constraints may also appear in typeclass declarations, meaning that one type
class is a “superclass” of another.

The arguments of a constraint on a type class declaration must be either type variables or
ground types. Each constraint must contain at least one variable argument and all variables
that appear in the arguments must also be arguments to the type class in question.

For example, the following declares the ‘ring’ type class, which describes types with a
particular set of numerical operations defined:

:- typeclass ring(T) where [

func zero = (T::out) is det, % ’+’ identity

func one = (T::out) is det, % ’*’ identity

func plus(T::in, T::in) = (T::out) is det, % ’+’/2 (forward mode)

func mult(T::in, T::in) = (T::out) is det, % ’*’/2 (forward mode)

func negative(T::in) = (T::out) is det % ’-’/1 (forward mode)

].

We can now add the following declaration:

:- typeclass euclidean(T) <= ring(T) where [

func div(T::in, T::in) = (T::out) is det,

func mod(T::in, T::in) = (T::out) is det

].

This introduces a new type class, euclidean, of which ring is a superclass. The opera-
tions defined by the euclidean type class are div, mod, as well as all those defined by the
ring type class. Any type declared to be an instance of euclidean must also be declared
to be an instance of ring.

Type class constraints on type class declarations gives rise to a superclass relation. This
relation must be acyclic. That is, it is an error if a type class is its own (direct or indirect)
superclass.

11.7 Type class constraints on instance declarations

Type class constraints may also be placed upon instance declarations. The arguments
of such constraints must be either type variables or ground types. Each constraint must
contain at least one variable argument and all variables that appear in the arguments must
be type variables that appear in the types in the instance declaration.

For example, consider the following declaration of a type class of types that may be
printed:

:- typeclass portrayable(T) where [

pred portray(T::in, io.state::di, io.state::uo) is det

].

The programmer could declare instances such as

:- instance portrayable(int) where [

pred(portray/3) is io.write_int

].

Chapter 11: Type classes 98

:- instance portrayable(char) where [

pred(portray/3) is io.write_char

].

However, when it comes to writing the instance declaration for a type such as list(T),
we want to be able print out the list elements using the portray/3 for the particular type of
the list elements. This can be achieved by placing a type class constraint on the instance
declaration, as in the following example:

:- instance portrayable(list(T)) <= portrayable(T) where [

pred(portray/3) is portray_list

].

:- pred portray_list(list(T), io.state, io.state) <= portrayable(T).

:- mode portray_list(in, di, uo) is det.

portray_list([], !IO).

portray_list([X | Xs], !IO) :-

portray(X, !IO),

io.write_char(’ ’, !IO),

portray_list(Xs, !IO).

For abstract instance declarations, the type class constraints on an abstract instance
declaration must exactly match the type class constraints on the corresponding non-abstract
instance declaration that defines that instance.

The abstract version of the above instance declaration would be

:- instance portrayable(list(T)) <= portrayable(T).

11.8 Functional dependencies

Type class constraints may include any number of functional dependencies. A functional
dependency constraint takes the form (Domain -> Range). The Domain and Range ar-
guments are either single type variables, or conjunctions of type variables separated by
commas.

:- typeclass Typeclass(Var, ...) <= ((D -> R), ...) ...

:- typeclass Typeclass(Var, ...) <= (D1, D2, ... -> R1, R2, ...), ...

Each type variable must appear in the parameter list of the typeclass. Abstract typeclass
declarations must have exactly the same functional dependencies as their concrete forms.

Mutually recursive functional dependencies are allowed, so the following examples are
legal:

:- typeclass foo(A, B) <= ((A -> B), (B -> A)).

:- typeclass bar(A, B, C, D) <= ((A, B -> C), (B, C -> D), (D -> A, C)).

A functional dependency on a typeclass places an additional requirement on the set of
instances which are allowed for that type class. The requirement is that all types bound to
variables in the range of the functional dependency must be able to be uniquely determined
by the types bound to variables in the domain of the functional dependency. If more than
one functional dependency is present, then the requirement for each one must be satisfied.

Chapter 11: Type classes 99

For example, given the typeclass declaration

:- typeclass baz(A, B) <= (A -> B) where ...

it would be illegal to have both of the instances

:- instance baz(int, int) where ...

:- instance baz(int, string) where ...

although either one would be acceptable on its own.

The following instance would also be illegal

:- instance baz(string, list(T)) where ...

since the variable T may not always be bound to the same type. However, the instance

:- instance baz(list(S), list(T)) <= baz(S, T) where ...

is legal because the ‘baz(S, T)’ constraint ensures that whatever T is bound to, it is
always uniquely determined from the binding of S.

The extra requirements that result from the use of functional dependencies allow the
bindings of some variables to be determined from the bindings of others. This in turn relaxes
some of the requirements of typeclass constraints on predicate and function signatures, and
on existentially typed data constructors.

Without any functional dependencies, all variables in constraints must appear in the
signature of the predicate or function being declared. However, variables which are in the
range of a functional dependency need not appear in the signature, since it is known that
their bindings will be determined from the bindings of the variables in the domain.

More formally, the constraints on a predicate or function signature induce a set of func-
tional dependencies on the variables appearing in those constraints. A functional depen-
dency ‘(A1, ... -> B1, ...)’ is induced from a constraint ‘Typeclass(Type1, ...)’ if
and only if the typeclass ‘Typeclass ’ has a functional dependency ‘(D1, ... -> R1, ...)’,
and for each typeclass parameter ‘Di’ there exists an ‘Aj’ every type variable appearing
in the ‘Typek ’ corresponding to ‘Di’, and each ‘Bi’ appears in the ‘Typej ’ bound to the
typeclass parameter ‘Rk’ for some k.

For example, with the definition of baz above, the constraint baz(map(X, Y), list(Z))

induces the constraint (X, Y -> Z), since X and Y appear in the domain argument, and Z
appears in the range argument.

The set of type variables determined from a signature is the closure of the set appearing in
the signature under the functional dependencies induced from the constraints. The closure
is defined as the smallest set of variables which includes all of the variables appearing in the
signature, and is such that, for each induced functional dependency ‘Domain -> Range ’, if
the closure includes all of the variables in Domain then it includes all of the variables in
Range.

For example, the declaration

:- pred p(X, Y) <= baz(map(X, Y), list(Z)).

is acceptable since the closure of {X, Y} under the induced functional dependency must
include Z. Moreover, the typeclass baz/2 would be allowed to have a method that only uses
the first parameter, A, since the second parameter, B, would always be determined from
the first.

Chapter 11: Type classes 100

Note that, since all instances must satisfy the superclass constraints, the restrictions on
instances obviously transfer from superclass to subclass. Again, this allows the requirements
of typeclass constraints to be relaxed. Thus, the functional dependencies on the ancestors
of constraints also induce functional dependencies on the variables, and the closure that we
calculate takes these into account.

For example, in this code

:- typeclass quux(P, Q, R) <= baz(R, P) where ...

:- pred q(Q, R) <= quux(P, Q, R).

the signature of q/2 is acceptable since the superclass constraint on quux/2 induces the
dependency ‘R -> P’ on the type variables, hence P is in the closure of {Q, R}.

The presence of functional dependencies also allows “improvement” to occur during
type inference. This can occur in two ways. First, if two constraints of a given class match
on all of the domain arguments of a functional dependency on that class, then it can be
inferred that they also match on the range arguments. For example, given the constraints
baz(A, B1) and baz(A, B2), it will be inferred that B1 = B2.

Similarly, if a constraint of a given class is subsumed by a known instance of that class
in the domain arguments, then its range arguments can be unified with the corresponding
instance range arguments. For example, given the instance:

:- instance baz(list(T), string) where ...

then the constraint baz(list(int), X) can be improved with the inference that
X = string.

Chapter 12: Existential types 101

12 Existential types

Existentially quantified type variables (or simply “existential types” for short) are useful
tools for data abstraction. In combination with type classes, they allow you to write code
in an “object oriented” style that is similar to the use of interfaces in Java or abstract base
classes in C++.

Mercury supports existential type quantifiers on predicate and function declarations,
and in data type definitions. You can put type class constraints on existentially quantified
type variables.

12.1 Existentially typed predicates and functions

12.1.1 Syntax for explicit type quantifiers

Type variables in type declarations for polymorphic predicates or functions are normally
universally quantified. However, it is also possible to existentially quantify such type vari-
ables, by using an explicit existential quantifier of the form ‘some Vars ’ before the ‘pred’
or ‘func’ declaration, where Vars is a list of variables.

For example:

% Here the type variables ‘T’ is existentially quantified

:- some [T] pred foo(T).

% Here the type variables ‘T1’ and ‘T2’ are existentially quantified.

:- some [T1, T2] func bar(int, list(T1), set(T2)) = pair(T1, T2).

% Here the type variable ‘T2’ is existentially quantified,

% but the type variables ‘T1’ and ‘T3’ are universally quantified.

:- some [T2] pred foo(T1, T2, T3).

Explicit universal quantifiers, of the form ‘all Vars ’, are also permitted on ‘pred’ and
‘func’ declarations, although they are not necessary, since universal quantification is the
default. (If both universal and existential quantifiers are present, the universal quantifiers
must precede the existential quantifiers.) For example:

% Here the type variable ‘T2’ is existentially quantified,

% but the type variables ‘T1’ and ‘T3’ are universally quantified.

:- all [T3] some [T2] pred foo(T1, T2, T3).

12.1.2 Semantics of type quantifiers

If a type variable in the type declaration for a polymorphic predicate or function is univer-
sally quantified, this means the caller will determine the value of the type variable, and the
callee must be defined so that it will work for all types which are an instance of its declared
type.

For an existentially quantified type variable, the situation is the converse: the callee

must determine the value of the type variable, and all callers must be defined so as to work
for all types which are an instance of the called procedure’s declared type.

When type checking a predicate or function, if a variable has a type that occurs as a
universally quantified type variable in the predicate or function declaration, or a type that

Chapter 12: Existential types 102

occurs as an existentially quantified type variable in the declaration of one of the predicates
or functions that it calls, then its type is treated as an opaque type. This means that there
are very few things which it is legal to do with such a variable — basically you can only pass
it to another procedure expecting the same type, unify it with another value of the same
type, put it in a polymorphic data structure, or pass it to a polymorphic procedure whose
argument type is universally quantified. (Note, however, that the standard library includes
some quite powerful procedures such as ‘io.write’ which can be useful in this context.)

A non-variable type (i.e. a type that is not a type variable) is considered more general

than an existentially quantified type variable. Type inference will therefore never infer an
existentially quantified type for a predicate or function unless that predicate or function
calls (directly or indirectly) a predicate or function which was explicitly declared to have
an existentially quantified type.

Note that an existentially typed procedure is not allowed to have different types for its
existentially typed arguments in different clauses (even mode-specific clauses) or in different
subgoals of a single clause; however, the same effect can be achieved in other ways (see
Section 12.4 [Some idioms using existentially quantified types], page 106).

For procedures involving calls to existentially-typed predicates or functions, the com-
piler’s mode analysis must take account of the modes for type variables in all polymorphic
calls. Universally quantified type variables have mode in, whereas existentially quantified
type variables have mode out. As usual, the compiler’s mode analysis will attempt to
reorder the elements of conjunctions in order to satisfy the modes.

12.1.3 Examples of correct code using type quantifiers

Here are some examples of type-correct code using universal and existential types.

/* simple examples */

:- pred foo(T).

foo(_).

% ok

:- pred call_foo.

call_foo :- foo(42).

% ok (T = int)

:- some [T] pred e_foo(T).

e_foo(X) :- X = 42.

% ok (T = int)

:- pred call_e_foo.

call_e_foo :- e_foo(_).

% ok

/* examples using higher-order functions */

:- func bar(T, T, func(T) = int) = int.

bar(X, Y, F) = F(X) + F(Y).

Chapter 12: Existential types 103

% ok

:- func call_bar = int.

call_bar = bar(2, 3, (func(X) = X*X)).

% ok (T = int)

% returns 13 (= 2*2 + 3*3)

:- some [T] pred e_bar(T, T, func(T) = int).

:- mode e_bar(out, out, out(func(in) = out is det)).

e_bar(2, 3, (func(X) = X * X)).

% ok (T = int)

:- func call_e_bar = int.

call_e_bar = F(X) + F(Y) :- e_bar(X, Y, F).

% ok

% returns 13 (= 2*2 + 3*3)

12.1.4 Examples of incorrect code using type quantifiers

Here are some examples of code using universal and existential types that contains type
errors.

/* simple examples */

:- pred bad_foo(T).

bad_foo(42).

% type error

:- some [T] pred e_foo(T).

e_foo(42).

% ok

:- pred bad_call_e_foo.

bad_call_e_foo :- e_foo(42).

% type error

:- some [T] pred e_bar1(T).

e_bar1(42).

e_bar1(42).

e_bar1(43).

% ok (T = int)

:- some [T] pred bad_e_bar2(T).

bad_e_bar2(42).

bad_e_bar2("blah").

% type error (cannot unify types ‘int’ and ‘string’)

Chapter 12: Existential types 104

:- some [T] pred bad_e_bar3(T).

bad_e_bar3(X) :- e_foo(X).

bad_e_bar3(X) :- e_foo(X).

% type error (attempt to bind type variable ‘T’ twice)

12.2 Existential class constraints

Existentially quantified type variables are especially useful in combination with type class
constraints.

Type class constraints can be either universal or existential. Universal type class con-
straints are written using ‘<=’, as described in Section 11.5 [Type class constraints on
predicates and functions], page 96; they signify a constraint that the caller must satisfy.
Existential type class constraints are written in the same syntax as universal constraints,
but using ‘=>’ instead of ‘<=’; they signify a constraint that the callee must satisfy. If a
declaration has both universal and existential constraints, then the existential constraints
must precede the universal constraints.

For example:

% Here ‘c1(T2)’ and ‘c2(T2)’ are existential constraints,

% and ‘c3(T1)’ is a universal constraint,

:- all [T1] some [T2] ((pred p(T1, T2) => (c1(T2), c2(T2))) <= c3(T1)).

Existential constraints must only constrain type variables that are explicitly existentially
quantified. Likewise, universal constraints must only constrain type variables that are
universally quantified, although in this case the quantification does not have to be explicit
because universal quantification is the default (see Section 12.1.1 [Syntax for explicit type
quantifiers], page 101).

12.3 Existentially typed data types

Type variables occurring in the body of a discriminated union type definition may be
existentially quantified. Constructor definitions within discriminated union type definitions
may be preceded by an existential type quantifier and followed by one or more existential
type class constraints.

For example:

% A simple heterogeneous list type.

:- type list_of_any

---> nil_any

; some [T] cons_any(T, list_of_any).

% A heterogeneous list type with a type class constraint.

:- typeclass showable(T) where [func show(T) = string].

:- type showable_list

---> nil

; some [T] (cons(T, showable_list) => showable(T)).

% A different way of doing the same kind of thing, this

Chapter 12: Existential types 105

% time using the standard type list(T).

:- type showable

---> some [T] (s(T) => showable(T)).

:- type list_of_showable == list(showable).

% Here is an arbitrary example involving multiple type variables

% and multiple constraints.

:- typeclass foo(T1, T2) where [/* ... */].

:- type bar(T)

---> f1

; f2(T)

; some [T1] f3(T1)

; some [T1, T2] f4(T1, T2, T) => (showable(T1), showable(T2))

; some [T1, T2] f5(list(T1), T2) => fooable(T1, T2).

Construction and deconstruction of existentially quantified data types are inverses: when
constructing a value of an existentially quantified data type, the “existentially quantified”
functor acts for purposes of type checking like a universally quantified function: the caller
will determine the values of the type variables. Conversely, for deconstruction the functor
acts like an existentially quantified function: the caller must be defined so as to work for
all possible values of the existentially quantified type variables which satisfy the declared
type class constraints.

In order to make this distinction clear to the compiler, whenever you want to construct
a value using an existentially quantified functor, you must prepend ‘new ’ onto the functor
name. This tells the compiler to treat it as though it were universally quantified: the caller
can bind that functor’s existentially quantified type variables to any type which satisfies
the declared type class constraints. Conversely, any occurrence without the ‘new ’ prefix
must be a deconstruction, and is therefore existentially quantified: the caller must not bind
the existentially quantified type variables, but the caller is allowed to depend on those type
variables satisfying the declared type class constraints, if any.

For example, the function ‘make_list’ constructs a value of type ‘showable_list’ con-
taining a sequence of values of different types, all of which are instances of the ‘showable’
class

:- instance showable(int).

:- instance showable(float).

:- instance showable(string).

:- func make_list = showable_list.

make_list = List :-

Int = 42,

Float = 1.0,

String = "blah",

List = ’new cons’(Int,

’new cons’(Float,

’new cons’(String, nil))).

while the function ‘process_list’ below applies the ‘show’ method of the ‘showable’ class
to the values in such a list.

Chapter 12: Existential types 106

:- func process_list(showable_list) = list(string).

process_list(nil) = "".

process_list(cons(Head, Tail)) = [show(Head) | process_list(Tail)].

There are some restrictions on the forms that existentially typed data constructors can take.

One restriction is that no type variable may be quantified both universally, by being listed
as an argument of the type constructor, and existentially, by being listed in the existential
type quantifier before the data constructor. The type ‘t12’ violates this restriction:

:- type t12(T)

---> f1(T)

; some [T] f2(T).

The reason for the restriction is simple: without it, how can one decide whether the argu-
ment of ‘f2’ is universally or existentially quantified?

The other restriction is that every existentially quantified type variable must occur

• either in one of the argument types of the data constructor,

• or in one of the type class constraints on the data constructor, in the range of a
functional dependency.

This means that the type ‘t3’ in

:- type t3

---> some [T1, T2] f5(T1) => xable(T1, T2).

violates this restriction unless the type class ‘xable’ has a functional dependency that
determines the type bound to its second argument from the type bound to its first.

The reason for this restriction is that the identity of the type bound to the existential
type variable must somehow be decided at runtime. It can either be given by the type of
an argument, or determined through a functional dependency from the types bound to one
or more other existential type variables.

12.4 Some idioms using existentially quantified types

The standard library module ‘univ’ provides an abstract type named ‘univ’ which can
hold values of any type. You can form heterogeneous containers (containers that can hold
values of different types at the same time) by using data structures that contain univs, e.g.
‘list(univ)’.

The interface to ‘univ’ includes the following:

% ‘univ’ is a type which can hold any value.

:- type univ.

% The function univ/1 takes a value of any type and constructs

% a ‘univ’ containing that value (the type will be stored along

% with the value)

:- func univ(T) = univ.

% The function univ_value/1 takes a ‘univ’ argument and extracts

% the value contained in the ‘univ’ (together with its type).

% This is the inverse of the function univ/1.

Chapter 12: Existential types 107

:- some [T] func univ_value(univ) = T.

The ‘univ’ type in the standard library is in fact a simple example of an existentially
typed data type. It could be implemented as follows:

:- implementation.

:- type univ

---> some [T] mkuniv(T).

univ(X) = ’new mkuniv’(X).

univ_value(mkuniv(X)) = X.

An existentially typed procedure is not allowed to have different types for its existentially
typed arguments in different clauses or in different subgoals of a single clause. For instance,
both of the following examples are illegal:

:- some [T] pred bad_example(string, T).

bad_example("foo", 42).

bad_example("bar", "blah").

% type error (cannot unify ‘int’ and ‘string’)

:- some [T] pred bad_example2(string, T).

bad_example2(Name, Value) :-

(Name = "foo", Value = 42

; Name = "bar", Value = "blah"

).

% type error (cannot unify ‘int’ and ‘string’)

However, using ‘univ’, it is possible for an existentially typed function to return values
of different types at each invocation.

:- some [T] pred good_example(string, T).

good_example(Name, univ_value(Univ)) :-

(Name = "foo", Univ = univ(42)

; Name = "bar", Univ = univ("blah")

).

Using ‘univ’ doesn’t work if you also want to use type class constraints. If you want
to use type class constraints, then you must define your own existentially typed data type,
analogous to ‘univ’, and use that:

:- type univ_showable

---> some [T] (mkshowable(T) => showable(T)).

:- some [T] pred harder_example(string, T) => showable(T).

harder_example(Name, Showable) :-

(Name = "bar", Univ = ’new mkshowable’(42)

; Name = "bar", Univ = ’new mkshowable’("blah")

),

Univ = mkshowable(Showable).

Chapter 12: Existential types 108

The issue can also arise for mode-specific clauses (see Section 5.4 [Different clauses for
different modes], page 60). For instance, the following example is illegal:

:- some [T] pred bad_example3(string, T).

:- mode bad_example3(in(bound("foo")), out) is det.

:- mode bad_example3(in(bound("bar")), out) is det.

:- pragma promise_pure(bad_example3/2).

bad_example3("foo"::in(bound("foo")), 42::out).

bad_example3("bar"::in(bound("bar")), "blah"::out).

% type error (cannot unify ‘int’ and ‘string’)

The solution is similar, although in this case an intermediate predicate is required:

:- some [T] pred good_example3(string, T).

:- mode good_example3(in(bound("foo")), out) is det.

:- mode good_example3(in(bound("bar")), out) is det.

good_example3(Name, univ_value(Univ)) :-

good_example3_univ(Name, Univ).

:- pred good_example3_univ(string, univ).

:- mode good_example3_univ(in(bound("foo")), out) is det.

:- mode good_example3_univ(in(bound("bar")), out) is det.

:- pragma promise_pure(good_example3_univ/2).

good_example3_univ("foo"::in(bound("foo")), univ(42)::out).

good_example3_univ("bar"::in(bound("bar")), univ("blah")::out).

Chapter 13: Type conversions 109

13 Type conversions

(This is a new and experimental feature, subject to change.)

A term may be converted from one type FromType to another type ToType using a
type conversion expression of the form:

coerce(Term)

The expression is type-correct iff FromType and ToType are both discriminated union
types, and after replacing the principal type constructors with base types (see Section 4.2.4
[Subtypes], page 43) the two types have the same type constructor, and the arguments of
the common type constructor satisfy the type parameter variance restrictions below.

Let FromType expand out to ‘base(S1, ..., Sn)’ and ToType expand out to ‘base(T1,
..., Tn)’, where ‘base(B1, ..., Bn)’ is the common base type, and Bi is the i’th type
parameter, which is bound to Si in FromType and Ti in ToType.

For each pair of corresponding type arguments, one of the following must be true:

• ‘Si = Ti’ if the two types are the same

• ‘Si < Ti’ if Si is a subtype of Ti, according to visible subtype definitions

• ‘Ti < Si’ if Ti is a subtype of Si, according to visible subtype definitions

Otherwise, the coerce expression is not type-correct.

Furthermore, ‘Si = Ti’ must be true if Bi occurs in one or more of these locations in the
‘base/n’ type definition:

• in a higher-order type

• in a foreign type

• in an abstract type

• in a solver type

• in a discriminated union type, other than a recursive type of the exact form ‘base(B1,
..., Bn)’

Mode checking

Type conversion expressions must also be mode-correct. Intuitively, conversion from a
subtype to its supertype is safe, but a conversion from a supertype to one of its subtypes is
safe only if the inst approximating the term to be converted indicates that the result would
also be valid in the subtype.

Mode checking proceeds by simultaneously traversing the inst tree of the coerce ar-
gument, the type tree of the coerce argument, and the type tree of the result term, and
producing the inst tree of the result term if the conversion is valid. Let

• InstX be the current node in the coerce argument’s inst tree,

• InstY be the current node in the result inst tree,

• TypeX be the current node in the coerce argument’s type tree,

• TypeY be the current node in the result type tree,

• TypeCtorX be the principal type constructor of TypeX,

• TypeCtorY be the principal type constructor of TypeY.

Chapter 13: Type conversions 110

In the following, X < Y means X is a subtype of Y by visible subtype definitions.

For each node InstX :

• If InstX is a recursive node in the inst tree (i.e. it is its own ancestor), then we require
TypeX =< TypeY. Let InstY = InstX.

• Otherwise, if InstX is a bound node, then each of the function symbols listed in the
bound inst must name a constructor in TypeCtorY. Let InstY be a bound inst contain-
ing the same function symbols; the insts for the arguments of each function symbol are
then checked and constructed recursively.

• Otherwise, if InstX is a ground node and TypeX = TypeY, then InstY = InstX.

• Otherwise, if InstX is a ground node and TypeX < TypeY, then let InstY be the bound
node constructed using the process below.

• Otherwise, the coerce expression is not mode-correct.

To construct a ‘bound’ node InstY from a ‘ground’ node InstX :

• If TypeX = TypeY or if TypeX is a recursive node in the type tree (i.e. it is its own
ancestor), then let InstY be ground.

• Otherwise, let InstY be a bound inst containing all of the constructors in TypeCtorX ;
the insts for the arguments of each function symbol are constructed recursively.

Examples

Assume we have:

:- type fruit

---> apple

; lemon

; orange.

:- type citrus =< fruit

---> lemon

; orange.

This function is type and mode-correct:

:- func f1(citrus) = fruit.

f1(X) = coerce(X).

This function is type-correct but not mode-correct because some fruits are not citrus:

:- func f2(fruit) = citrus.

f2(X) = coerce(X). % incorrect

This function is mode-correct because the initial inst of the input argument limits the
range of fruit values to those that would also be valid in citrus:

:- inst citrus for fruit/0

---> lemon

; orange.

Chapter 13: Type conversions 111

:- func f3(fruit) = citrus.

:- mode f3(in(citrus)) = out is det.

f3(X) = coerce(X).

Finally, this function is type-incorrect because in the coerce expression, the type param-
eter T of wrap/1 is bound to fruit in the input type, but citrus in the result type.

:- type wrap(T)

---> wrap(T).

:- func f4(func(fruit) = int) = (func(citrus) = int).

f4(X) = Y :-

wrap(Y) = coerce(wrap(X)). % incorrect

Chapter 14: Exception handling 112

14 Exception handling

Mercury procedures may throw exceptions. Exceptions may be caught using the predicates
defined in the ‘exception’ library module, or using try goals.

A ‘try’ goal has the following form:

try Params Goal

then ThenGoal

else ElseGoal

catch Term -> CatchGoal

...

catch_any CatchAnyVar -> CatchAnyGoal

Goal, ThenGoal, ElseGoal, CatchGoal, CatchAnyGoal must be valid goals.

Goal must have one of the following determinisms: det, semidet, cc_multi, or
cc_nondet.

The non-local variables of Goal must not have an inst equivalent to unique,
mostly_unique or any, unless they have the type ‘io.state’.

Params must be a valid list of zero or more try parameters.

The “then” part is mandatory. The “else” part is mandatory if Goal may fail; otherwise
it must be omitted. There may be zero or more “catch” branches. The “catch any” part is
optional. CatchAnyVar must be a single variable.

The try parameter ‘io’ takes a single argument, which must be the name of a state
variable prefixed by ‘!’; for example, ‘io(!IO)’. The state variable must have the type
‘io.state’, and be in scope of the try goal. The state variable is threaded through Goal,
so it may perform I/O but cannot fail. If no ‘io’ parameter exists, Goal may not perform
I/O and may fail.

A try goal has determinism cc_multi.

On entering a try goal, Goal is executed. If it succeeds without throwing an exception,
ThenGoal is executed. Any variables bound by Goal are visible in ThenGoal only. If Goal
fails, then ElseGoal is executed.

If Goal throws an exception, the exception value is unified with each of the Terms in the
“catch” branches in turn. On the first successful unification, the corresponding CatchGoal
is executed (and other “catch” and “catch any” branches ignored). Variables bound during
the unification of the Term are in scope of the corresponding CatchGoal.

If the exception value does not unify with any of the terms in “catch” branches, and a
“catch any” branch is present, the exception is bound to CatchAnyVar and the CatchAny-
Goal executed. CatchAnyVar is visible in the CatchAnyGoal only, and is existentially
typed, i.e. it has type ‘some [T] T’.

Finally, if the thrown value did not unify with any “catch” term, and there is no
“catch any” branch, the exception is rethrown.

The declarative semantics of a try goal is:

Chapter 14: Exception handling 113

(

try [] Goal

then Then

else Else

catch CP1 -> CG1

catch CP2 -> CG2

...

catch_any CAV -> CAG

)

<=>

(

Goal, Then

;

not Goal, Else

;

some [Excp]

(if Excp = CP1 then

CG1

else if Excp = CP2 then

CG2

else if ...

...

else

Excp = CAV,

CAG

)

).

If no ‘else’ branch is present, then ‘Else = fail’. If no ‘catch_any’ branch is present,
then ‘CAG = fail’.

An example of a try goal that performs I/O is:

:- pred p_carefully(io::di, io::uo) is cc_multi.

p_carefully(!IO) :-

(try [io(!IO)] (

io.write_string("Calling p\n", !IO),

p(Output, !IO)

)

then

io.write_string("p returned: ", !IO),

io.write(Output, !IO),

io.nl(!IO)

catch S ->

io.write_string("p threw a string: ", !IO),

io.write_string(S, !IO),

io.nl(!IO)

catch 42 ->

Chapter 14: Exception handling 114

io.write_string("p threw 42\n", !IO)

catch_any Other ->

io.write_string("p threw something: ", !IO),

io.write(Other, !IO),

% Rethrow the value.

throw(Other)

).

Chapter 15: Formal semantics 115

15 Formal semantics

A legal Mercury program is one that complies with the syntax, type, mode, determinism,
and module system rules specified in earlier chapters. If a program does not comply with
those rules, the compiler must report an error.

For each legal Mercury program, there is an associated predicate calculus theory whose
language is specified by the type declarations in the program and whose axioms are the
completion of the clauses for all predicates in the program, plus the usual equality axioms
extended with the completion of the equations for all functions in the program, plus axioms
corresponding to the mode-determinism assertions (see Chapter 7 [Determinism], page 64),
plus axioms specifying the semantics of library predicates and functions. The declarative
semantics of a legal Mercury program is specified by this theory.

Mercury implementations must be sound: the answers they compute must be true in
every model of the theory. Mercury implementations are not required to be complete: they
may fail to compute an answer in finite time, or they may exhaust the resource limitations of
the execution environment, even though an answer is provable in the theory. However, there
are certain minimum requirements that they must satisfy with respect to completeness.

There is an operational semantics of Mercury programs called the strict sequential op-
erational semantics. In this semantics, the program is executed top-down, starting from
‘main/2’ preceded by any module initialisation goals (as per Section 10.4 [Module initial-
isation], page 87), followed by any module finalisation goals (as per Section 10.5 [Module
finalisation], page 88), and function calls within a goal, conjunctions and disjunctions are
all executed in depth-first left-to-right order. Conjunctions and function calls are “mini-
mally” reordered as required by the modes: the order is determined by selecting the first
mode-correct sub-goal (conjunct or function call), executing that, then selecting the first
of the remaining sub-goals which is now mode-correct, executing that, and so on. (There
is no interleaving of different individual conjuncts or function calls, however; the sub-goals
are reordered, not split and interleaved.) Function application is strict, not lazy.

Mercury implementations are required to provide a method of processing Mercury pro-
grams which is equivalent to the strict sequential operational semantics.

There is another operational semantics of Mercury programs called the strict commuta-
tive operational semantics. This semantics is equivalent to the strict sequential operational
semantics except that there is no requirement that function calls, conjunctions and dis-
junctions be executed left-to-right; they may be executed in any order, and may even be
interleaved. Furthermore, the order may even be different each time a particular goal is
entered.

As well as providing the strict sequential operational semantics, Mercury implementa-
tions may optionally provide additional implementation-defined operational semantics, pro-
vided that any such implementation-defined operational semantics are at least as complete
as the strict commutative operational semantics. An implementation-defined semantics is
“at least as complete” as the strict commutative semantics if and only if the implementation-
defined semantics guarantees to compute an answer in finite time for any program for which
an answer would be computed in finite time for all possible executions under the strict com-
mutative semantics (i.e. for all possible orderings of conjunctions and disjunctions).

Thus, to summarize, there are in fact a variety of different operational semantics for
Mercury. In one of them, the strict sequential semantics, there is no nondeterminism —

Chapter 15: Formal semantics 116

the behaviour is always specified exactly. Programs are executed top-down using SLDNF
(or something equivalent), mode analysis does “minimal” reordering (in a precisely defined
sense), function calls, conjunctions and disjunctions are executed depth-first left-to-right,
and function evaluation is strict. All implementations are required to support the strict
sequential semantics, so that a program which works on one implementation using this se-
mantics will be guaranteed to work on any other implementation. However, implementations
are also allowed to support other operational semantics, which may have non-determinism,
so long as they are sound with respect to the declarative semantics, and so long as they
meet a minimum level of completeness (they must be at least as complete as the strict
commutative semantics, in the sense that every program which terminates for all possible
orderings must also terminate in any implementation-defined operational semantics).

This compromise allows Mercury to be used in several different ways. Programmers who
care more about ease of programming and portability than about efficiency can use the strict
sequential semantics, and can then be guaranteed that if their program works on one correct
implementation, it will work on all correct implementations. Compiler implementors who
want to write optimizing implementations that do lots of clever code reorderings and other
high-level transformations or that want to offer parallelizing implementations which take
maximum advantage of parallelism can define different semantic models. Programmers who
care about efficiency more than portability can write code for these implementation-defined
semantic models. Programmers who care about efficiency and portability can achieve this
by writing code for the strict commutative semantics. Of course, this is not quite as easy
as using the strict sequential semantics, since it is in general not sufficient to test your
programs on just one implementation if you are to be sure that it will be able to use the
maximally efficient operational semantics on any implementation. However, if you do write
code which works for all possible executions under the strict commutative semantics (i.e. for
all possible orderings of conjunctions and disjunctions), then you can be guaranteed that it
will work correctly on every implementation, under every possible implementation-defined
semantics.

The Melbourne Mercury implementation offers eight different semantics, which can be
selected with different combinations of the ‘--no-reorder-conj’, ‘--no-reorder-disj’,
and ‘--no-fully-strict’ options. (The ‘--no-fully-strict’ option allows the com-
piler to improve completeness by optimizing away infinite loops and goals with determin-
ism erroneous.) The default semantics are the strict commutative semantics. Enabling
‘--no-reorder-conj’ and ‘--no-reorder-disj’ gives the strict sequential semantics.

Future implementations of Mercury may wish to offer other operational semantics. For
example, they may wish to provide semantics in which function evaluation is lazy, rather
than strict; semantics with a guaranteed fair search rule; and so forth.

Chapter 16: Foreign language interface 117

16 Foreign language interface

This chapter documents the foreign language interface.

16.1 Calling foreign code from Mercury

Mercury procedures can be implemented using fragments of foreign language code using
‘pragma foreign_proc’.

16.1.1 pragma foreign proc

A declaration of the form

:- pragma foreign_proc("Lang",

Pred(Var1::Mode1, Var2::Mode2, ...),

Attributes, Foreign_Code).

or

:- pragma foreign_proc("Lang",

Func(Var1::Mode1, Var2::Mode2, ...) = (Var::Mode),

Attributes, Foreign_Code).

means that any calls to the specified mode of Pred or Func will result in execution of
the foreign code given in Foreign Code written in language Lang, if Lang is selected as
the foreign language code by this implementation. See the “Foreign Language Interface”
chapter of the Mercury User’s Guide, for more information about how the implementation
selects the appropriate ‘foreign_proc’ to use.

The foreign code fragment may refer to the specified variables (Var1, Var2, . . . , and
Var) directly by name. It is an error for a variable to occur more than once in the argument
list. These variables will have foreign language types corresponding to their Mercury types,
as determined by language and implementation specific rules.

All ‘foreign_proc’ implementations are assumed to be impure. If they are actually pure
or semipure, they must be explicitly promised as such by the user (either by using foreign
language attributes specified below, or a ‘promise_pure’ or ‘promise_semipure’ pragma
as specified in Chapter 17 [Impurity], page 146).

Additional restrictions on the foreign language interface code depend on the foreign
language and compilation options. For more information, including the list of supported
foreign languages and the strings used to identify them, see the language specific information
in the “Foreign Language Interface” chapter of the Mercury User’s Guide.

If there is a pragma foreign_proc declaration for any mode of a predicate or function,
then there must be either a clause or a pragma foreign_proc declaration for every mode
of that predicate or function.

Here is an example of code using ‘pragma foreign_proc’. The following code defines a
Mercury function ‘sin/1’ which calls the C function ‘sin()’ of the same name.

Chapter 16: Foreign language interface 118

:- func sin(float) = float.

:- pragma foreign_proc("C",

sin(X::in) = (Sin::out),

[promise_pure, may_call_mercury],

"

Sin = sin(X);

").

If the foreign language code does not recursively invoke Mercury code, as in the above
example, then you can use ‘will_not_call_mercury’ in place of ‘may_call_mercury’ in
the declarations above. This allows the compiler to use a slightly more efficient calling
convention. (If you use this form, and the foreign code does invoke Mercury code, then the
behaviour is undefined — your program may misbehave or crash.)

If there are both Mercury definitions and foreign proc definitions for a procedure and/or
foreign proc definitions for different languages, it is implementation-defined which definition
is used.

For pure and semipure procedures, the declarative semantics of the foreign proc defini-
tions must be the same as that of the Mercury code. The only thing that is allowed to differ
is the efficiency (including the possibility of non-termination) and the order of solutions.

It is an error for a procedure with a ‘pragma foreign_proc’ declaration to have a de-
terminism of multi or nondet.

Since foreign procs with the determinism multi or nondet cannot be defined directly,
procedures with those determinisms that require foreign code in their implementation must
be defined using a combination of Mercury clauses and (semi)deterministic foreign procs.
The following implementation for the standard library predicate ‘string.append/3’ in the
mode ‘append(out, out, in) is multi’ illustrates this technique:

:- pred append(string, string, string).

:- mode append(out, out, in) is multi.

append(S1, S2, S3) :-

S3Len = string.length(S3),

append_2(0, S3Len, S1, S2, S3).

:- pred append_2(int::in, int::in, string::out, string::out, string::in) is multi.

append_2(NextS1Len, S3Len, S1, S2, S3) :-

(if NextS1Len = S3Len then

append_3(NextS1Len, S3Len, S1, S2, S3)

else

(

append_3(NextS1Len, S3Len, S1, S2, S3)

;

append_2(NextS1Len + 1, S3Len, S1, S2, S3)

)

).

Chapter 16: Foreign language interface 119

:- pred append_3(int::in, int::in, string::out, string::out, string::in) is det.

:- pragma foreign_proc("C",

append_3(S1Len::in, S3Len::in, S1::out, S2::out, S3::in),

[will_not_call_mercury, promise_pure],

"

S1 = allocate_string(S1Len); /* Allocate a new string of length S1Len */

memcpy(S1, S3, S1Len);

S1[S1Len] = ’\\0’;

S2 = allocate_string(S2, S3Len - S1Len);

strcpy(S2, S3Len + S1Len);

").

16.1.2 Foreign code attributes

As described above, ‘pragma foreign_proc’ declarations may include a list of attributes
describing properties of the given foreign function or code. All Mercury implementations
must support the attributes listed below. They may also support additional attributes.

The attributes which must be supported by all implementations are as follows:

‘may_call_mercury’/‘will_not_call_mercury’
This attribute declares whether or not execution inside this foreign language
code may call back into Mercury or not. The default, in case neither is
specified, is ‘may_call_mercury’. Specifying ‘will_not_call_mercury’
may allow the compiler to generate more efficient code. If you specify
‘will_not_call_mercury’, but the foreign language code does invoke Mercury
code, then the behaviour is undefined.

‘promise_pure’/‘promise_semipure’
This attribute promises that the purity of the given predicate or function
definition is pure or semipure. It is equivalent to a corresponding ‘pragma
promise_pure’ or ‘pragma promise_semipure’ declaration (see Chapter 17
[Impurity], page 146). If omitted, the clause specified by the ‘foreign_proc’
is assumed to be impure.

‘thread_safe’/‘not_thread_safe’/‘maybe_thread_safe’
This attribute declares whether or not it is safe for multiple threads to execute
this foreign language code concurrently. The default, in case none is specified,
is ‘not_thread_safe’. If the foreign language code is declared ‘thread_safe’,
then the Mercury implementation is permitted to execute the code concurrently
from multiple threads without taking any special precautions. If the foreign lan-
guage code is declared ‘not_thread_safe’, then the Mercury implementation
must not invoke the code concurrently from multiple threads. If the Mercury
implementation does use multithreading, then it must take appropriate steps
to prevent this. (The multithreaded version of the Melbourne Mercury im-
plementation protects ‘not_thread_safe’ code using a mutex: C code that
is not thread-safe has code inserted around it to obtain and release a mutex.
All non-thread-safe foreign language code shares a single mutex.) If the for-

Chapter 16: Foreign language interface 120

eign language code is declared ‘maybe_thread_safe’ then whether the code is
considered ‘thread_safe’ or ‘not_thread_safe’ depends upon a compiler flag.
This attribute is useful when the thread safety of the foreign code itself is con-
ditional. The Melbourne Mercury compiler uses the ‘--maybe-thread-safe’
option to set the value of the ‘maybe_thread_safe’ attribute.

Additional attributes which are supported by the Melbourne Mercury compiler are as
follows:

‘tabled_for_io’
This attribute should be attached to foreign procedures that do I/O. It tells
the debugger to make calls to the foreign procedure idempotent. This allows
the debugger to safely retry across such calls and also allows safe declarative
debugging of code containing such calls. For more information, see the “I/O
tabling” section of the Mercury User’s Guide. If the foreign procedure contains
gotos or static variables then the ‘pragma no_inline’ directive should also be
given. Note that currently I/O tabling will only be done for foreign procedures
that take a pair of I/O state arguments. Impure foreign procedures that perform
I/O will not be made idempotent, even if the tabled for io attribute is present.
Note also that the tabled for io attribute will likely be replaced in a future
release with a more general solution.

‘terminates’/‘does_not_terminate’
This attribute specifies the termination properties of the given predicate
or function definition. It is equivalent to the corresponding ‘pragma
terminates’ or ‘pragma does_not_terminate’ declaration. If omitted, the
termination property of the procedure is determined by the value of the
‘may_call_mercury’/‘will_not_call_mercury’ attribute. See Section 21.3
[Termination analysis], page 168 for more details.

‘will_not_throw_exception’
This attribute promises that the given predicate or function will not make
calls back to Mercury that may result in an exception being thrown. It is an
error to apply this attribute to procedures that have determinism erroneous.
This attribute is ignored for code that is declared as not making calls back
to Mercury via the ‘will_not_call_mercury’ attribute. Note: predicates or
functions that have polymorphic arguments but do not explicitly throw an
exception, via a call to ‘exception.throw/1’ or ‘require.error/1’, may still
throw exceptions because they may be called with arguments whose types have
user-defined equality or comparison predicates. If these user-defined equality
or comparison predicates throw exceptions then unifications or comparisons
involving these types may also throw exceptions. As such, we recommend that
only implementors of the Mercury system use this annotation for polymorphic
predicates and functions.

‘will_not_modify_trail/may_modify_trail’
This attribute declares whether or not a foreign procedure modifies the trail (see
Section 21.5 [Trailing], page 171). Specifying that a foreign procedure will not
modify the trail may allow the compiler to generate more efficient code for that

Chapter 16: Foreign language interface 121

procedure. In compilation grades that do not support trailing, this attribute is
ignored. The default, in case none is specified, is ‘may_modify_trail’.

‘will_not_call_mm_tabled/may_call_mm_tabled’
This attribute declares whether or not a foreign procedure makes calls back to
Mercury procedures that are evaluated using minimal model tabling (see Sec-
tion 21.2 [Tabled evaluation], page 164). Specifying that a foreign procedure
will not call procedures evaluated using minimal model tabling may allow the
compiler to generate more efficient code. In compilation grades that do not sup-
port minimal model tabling, this attribute is ignored. These attributes may not
be used with procedures that do not make calls back to Mercury, i.e. that have
the ‘will_not_call_mercury’ attribute. The default for foreign procedures
that ‘may_call_mercury’, in case none is specified, is ‘may_call_mm_tabled’.

‘affects_liveness/does_not_affect_liveness’
This attribute declares whether or not a foreign procedure uses and/or modifies
any part of the Mercury virtual machine (registers, stack slots) through means
other than its arguments. The ‘affects_liveness’ attribute says that it does;
The ‘does_not_affect_liveness’ attribute says that it does not. In the ab-
sence of either attribute, the compiler assumes ‘affects_liveness’, unless the
code of the foreign proc in question is empty.

‘may_duplicate/may_not_duplicate’
This attribute tells the compiler whether it is allowed to duplicate the foreign
code fragment through optimizations such as inlining. The ‘may_duplicate’
attribute says that it may; the ‘may_not_duplicate’ attribute says that it may
not. In the absence of either attribute, the compiler is allowed make its own
judgement in the matter, based on factors such as the size of the code fragment.

‘may_export_body/may_not_export_body’
This attribute tells the compiler whether it is allowed to duplicate the
foreign code fragment outside of the target file for the module that defines
the foreign procedure. The ‘may_export_body’ attribute says that it may;
the ‘may_not_export_body’ attribute says that it may not. The default is
‘may_export_body’.

16.2 Calling Mercury from foreign code

Mercury procedures may be exported so that they can be called by code written in a foreign
language.

A declaration of the form:

:- pragma foreign_export("Lang",

Pred(Mode1, Mode2, ...), "ForeignName").

or

:- pragma foreign_export("Lang",

Func(Mode1, Mode2, ...) = Mode,

"ForeignName").

exports a procedure for use by foreign language Lang. For each exported procedure, the
Mercury implementation will create an interface to the named Mercury procedure in the

Chapter 16: Foreign language interface 122

foreign language using the name ForeignName. The form of this interface is dependent upon
the specified foreign language. For further details see the language specific information
below.

It is an error to export a Mercury procedure that has a determinism of multi or nondet.

16.3 Data passing conventions

For each supported foreign language, we explain how to map a Mercury type to a type
in that foreign language. We also map the Mercury parameter passing convention to the
foreign language’s parameter passing convention.

16.3.1 C data passing conventions

The Mercury primitive types are mapped to the following C types:

Mercury type C type
int MR_Integer

int8 int8_t

int16 int16_t

int32 int32_t

int64 int64_t

uint MR_Unsigned

uint8 uint8_t

uint16 uint16_t

uint32 uint32_t

uint64 uint64_t

float MR_Float

char MR_Char

string MR_String

In the current implementation, MR_Integer is a typedef for a signed integral type which is
the same size as a pointer of type ‘void *’; MR_Unsigned is a typedef for an unsigned integral
type which is the same size as a pointer of type ‘void *’; MR_Float is a typedef for double
(unless the program and the Mercury library was compiled with ‘--single-prec-float’,
in which case it is a typedef for float); MR_Char is a typedef for a signed 32-bit integral
type and MR_String is a typedef for ‘char *’.

Mercury variables of primitive types are passed to and from C as C variables of the
corresponding C type.

For the Mercury standard library type ‘bool.bool’, there is a corresponding C type,
MR_Bool. C code can refer to the boolean data constructors ‘yes’ and ‘no’, as MR_YES and
MR_NO respectively.

For the Mercury standard library type ‘builtin.comparison_result’, there is a corre-
sponding C type, MR_Comparison_Result. C code can refer to the data constructors of this
type, ‘(<)’, ‘(=)’ and ‘(>)’, as MR_COMPARE_LESS, MR_COMPARE_EQUAL and MR_COMPARE_

GREATER respectively.

Mercury variables of a type for which there is a C ‘pragma foreign_type’ declaration
(see Section 16.4 [Using foreign types from Mercury], page 128) will be passed as the cor-
responding C type.

Chapter 16: Foreign language interface 123

Mercury tuple types are passed as MR_Tuple, which in the current implementation is a
typedef for a pointer of type ‘void *’ if ‘--high-level-code’ is enabled, and a typedef for
MR_Word otherwise.

Mercury variables of any other type are passed as a MR_Word, which in the current
implementation is a typedef for an unsigned type whose size is the same size as a pointer.
(Note: it would in fact be better for each Mercury type to map to a distinct abstract type
in C, since that would be more type-safe, and thus we may change this in a future release.
We advise programmers who are manipulating Mercury types in C code to use typedefs
for each user-defined Mercury type, and to treat each such type as an abstract data type.
This is good style and it will also minimize any compatibility problems if and when we do
change this.)

Mercury lists can be manipulated by C code using the following macros, which are
defined by the Mercury implementation.

MR_list_is_empty(list) /* test if a list is empty */

MR_list_head(list) /* get the head of a list */

MR_list_tail(list) /* get the tail of a list */

MR_list_empty() /* create an empty list */

MR_list_cons(head,tail) /* construct a list with the given head and tail */

Note that the use of these macros is subject to some caveats (see Section 16.10.1.8
[Memory management for C], page 138).

The implementation provides the macro MR_word_to_float for converting a value of
type MR_Word to one of type MR_Float, and the macro MR_float_to_word for converting
a value of type MR_Float to one of type MR_Word. These macros must be used to perform
these conversions since for some Mercury implementations ‘sizeof(MR_Float)’ is greater
than ‘sizeof(MR_Word)’.

The following fragment of C code illustrates the correct way to extract the head of a
Mercury list of floats.

MR_Float f;

f = MR_word_to_float(MR_list_head(list));

Omitting the call to MR_word_to_float in the above example would yield incorrect
results for implementations where ‘sizeof(MR_Float)’ is greater than ‘sizeof(MR_Word)’.

Similarly, the implementation provides the macros MR_word_to_int64 and MR_word_to_

uint64 for converting values of type MR_Word to ones of type int64_t or uint64_t respec-
tively, and the macros MR_int64_to_word and MR_uint64_to_word for converting values of
type int64_t or uint64_t respectively to ones of type MR_Word. These macros must be used
to perform these conversions since for some Mercury implementations ‘sizeof(int64_t)’
or ‘sizeof(uint64_t)’ are greater than ‘sizeof(MR_Word)’.

16.3.2 C# data passing conventions

The Mercury primitive types are mapped to the following Common Language Infrastructure
(CLI) and C# types:

Mercury type CLI type C#
type

Chapter 16: Foreign language interface 124

int System.Int32 int

int8 System.Int8 sbyte

int16 System.Int16 short

int32 System.Int32 int

int64 System.Int64 long

uint System.UInt32 uint

uint8 System.UInt8 byte

uint16 System.UInt16 ushort

uint32 System.UInt32 uint

uint64 System.UInt64 ulong

float System.Double double

char System.Int32 int

string System.String string

Note that the Mercury type char is mapped like int; not to the CLI type System.Char
because that only holds 16-bit numeric values.

For the Mercury standard library type ‘bool.bool’, there is a corresponding C# type,
mr_bool.Bool_0. C# code can refer to the boolean data constructors ‘yes’ and ‘no’, as
mr_bool.YES and mr_bool.NO respectively.

For the Mercury standard library type ‘builtin.comparison_result’, there is a corre-
sponding C# type, builtin.Comparison_result_0. C# code can refer to the data con-
structors of this type, ‘(<)’, ‘(=)’ and ‘(>)’, as builtin.COMPARE_LESS, builtin.COMPARE_
EQUAL and builtin.COMPARE_GREATER respectively.

Mercury variables of a type for which there is a C# ‘pragma foreign_type’ declara-
tion (see Section 16.4 [Using foreign types from Mercury], page 128) will be passed as the
corresponding C# type. Both reference and value types are supported.

Mercury tuple types are passed as ‘object[]’ where the length of the array is the number
of elements in the tuple.

Mercury variables whose type is a type variable will be passed as System.Object.

Mercury variables whose type is a Mercury discriminated union type will be passed as
a CLI type whose type name is determined from the Mercury type name (ignoring any
type parameters) followed by an underscore and then the type arity, expressed as a decimal
integer. The first character of the type name will have its case inverted, and the name may
be mangled to satisfy C# lexical rules.

For example, the following Mercury type corresponds to the C# class that follows (some
implementation details elided):

:- type maybe(T)

---> yes(yes_field :: T)

; no.

public static class Maybe_1 {

public static class Yes_1 : Maybe_1 {

public object yes_field;

public Yes_1(object x) { ... }

}

public static class No_0 : Maybe_1 {

Chapter 16: Foreign language interface 125

public No_0() { ... }

}

}

C# code generated by the Mercury compiler is placed in the ‘mercury’ namespace. Mer-
cury module qualifiers are converted into a C# class name by concatenating the components
with double underscore separators (‘__’). For example the Mercury type ‘foo.bar.baz/1’
will be passed as the C# type ‘mercury.foo__bar.Baz_1’.

Mercury array types are mapped to System.Array.

Mercury variables whose type is a Mercury equivalence type will be passed as the rep-
resentation of the right hand side of the equivalence type.

This mapping is subject to change and you should try to avoid writing code that relies
heavily upon a particular representation of Mercury terms.

Mercury arguments declared with input modes are passed by value to the C# function.

Arguments of type ‘io.state’ or ‘store.store(_)’ are not passed or returned at all.
(The reason for this is that these types represent mutable state, and in C# modifications
to mutable state are done via side effects, rather than argument passing.)

The handling of multiple output arguments is as follows.

If the Mercury procedure is deterministic and has no output arguments, then the return
type of the C# function is ‘void’; if it has one output argument, then the return value of
the function is that output argument.

If the Mercury procedure is deterministic and has two or more output arguments, then
the return type of the C# function is ‘void’. At the position of each output argument, the
C# function has an ‘out’ parameter.

If the Mercury procedure is semi-deterministic then the C# function returns a ‘bool’.
A ‘true’ return value denotes success and ‘false’ denotes failure. Output arguments are
handled in the same way as multiple outputs for deterministic procedures, using ‘out’
parameters. On failure the values of the ‘val’ fields are undefined.

Mercury lists can be manipulated by C# code using the following methods, which are
defined by the Mercury implementation.

bool list.is_empty(List_1 list) // test if a list is empty

object list.det_head(List_1 list) // get the head of a list

List_1 list.det_tail(List_1 list) // get the tail of a list

List_1 list.empty_list() // create an empty list

List_1 list.cons(object head, List_1 tail)

// construct a list with

// the given head and tail

16.3.3 Java data passing conventions

The Mercury primitive types are mapped to the following Java types:

Mercury type Java type
int int

int8 byte

int16 short

Chapter 16: Foreign language interface 126

int32 int

int64 long

uint int

uint8 byte

uint16 short

uint32 int

uint64 long

float double

char int

string java.lang.String

Note that since Java lacks unsigned integer types, Mercury’s unsigned integer types
correspond to signed integer types in Java.

Also, note that the Mercury type char is mapped like int; not to the Java type char

because that only holds 16-bit numeric values.

For the Mercury standard library type ‘bool.bool’, there is a corresponding Java type,
bool.Bool_0. Java code can refer to the boolean data constructors ‘yes’ and ‘no’, as
bool.YES and bool.NO respectively.

For the Mercury standard library type ‘builtin.comparison_result’, there is a corre-
sponding Java type, builtin.Comparison_result_0. Java code can refer to the data con-
structors of this type, ‘(<)’, ‘(=)’ and ‘(>)’, as builtin.COMPARE_LESS, builtin.COMPARE_
EQUAL and builtin.COMPARE_GREATER respectively.

Mercury variables of a type for which there is a Java ‘pragma foreign_type’ declara-
tion (see Section 16.4 [Using foreign types from Mercury], page 128) will be passed as the
corresponding Java type.

Mercury tuple types are passed as java.lang.Object[] where the length of the array
is the number of elements in the tuple.

Mercury variables whose types are universally quantified type variables will have generic
types. Mercury variables whose types are existentially quantified type variables will be
passed as java.lang.Object.

Mercury variables whose type is a Mercury discriminated union type will be passed as
a Java type whose type name is determined from the Mercury type name (ignoring any
type parameters) followed by an underscore and then the type arity, expressed as a decimal
integer. The first character of the type name will have its case inverted, and the name may
be mangled to satisfy Java lexical rules. Generics are used in the Java type for any type
parameters.

For example, the following Mercury type corresponds to the Java class that follows (some
implementation details elided):

:- type maybe(T)

---> yes(yes_field :: T)

; no.

public static class Maybe_1<T> {

public static class Yes_1<T> extends Maybe_1 {

public T yes_field;

public Yes_1(T x) { ... }

Chapter 16: Foreign language interface 127

}

public static class No_0<T> extends Maybe_1 {

public No_0() { ... }

}

}

Java code generated by the Mercury compiler is placed in the ‘jmercury’ package.
Mercury module qualifiers are converted into a Java class name by concatenating the
components with double underscore separators (‘__’). For example the Mercury type
‘foo.bar.baz/1’ will be passed as the Java type ‘jmercury.foo__bar.Baz_1’.

Mercury array types are mapped to Java array types.

Mercury variables whose type is a Mercury equivalence type will be passed as the rep-
resentation of the right hand side of the equivalence type.

This mapping is subject to change and you should try to avoid writing code that relies
heavily upon a particular representation of Mercury terms.

Mercury arguments declared with input modes are passed by value to the corresponding
Java function. If the Mercury procedure is a function whose result has an input mode,
then the Mercury function result is appended to the list of input parameters, so that the
Mercury function result becomes the last parameter to the corresponding Java function.

Arguments of type ‘io.state’ or ‘store.store(_)’ are not passed or returned at all.
(The reason for this is that these types represent mutable state, and in Java modifications
to mutable state are done via side effects, rather than argument passing.)

The handling of multiple output arguments is as follows.

If the Mercury procedure is deterministic and has no output arguments, then the return
type of the Java function is void; if it has one output argument, then the return value of
the function is that output argument.

If the Mercury procedure is deterministic and has two or more output arguments, then
the return type of the Java function is void. At the position of each output argument, the
Java function takes a value of the type ‘jmercury.runtime.Ref<T>’ where ‘T’ is the Java
type corresponding to the type of the output argument. ‘Ref’ is a class with a single field
‘val’, which is assigned the output value when the function returns.

If the Mercury procedure is semi-deterministic, then the Java function returns a
‘boolean’. A ‘true’ return value denotes success and ‘false’ denotes failure. Output
arguments are handled in the same way as multiple outputs for deterministic procedures,
using the ‘Ref’ class. On failure the values of the ‘val’ fields are undefined.

Mercury lists can be manipulated by Java code using the following methods, which are
defined by the Mercury implementation.

boolean list.is_empty(List_1<E> list) // test if a list is empty

E list.det_head(List_1<E> list) // get the head of a list

List_1<E> list.det_tail(List_1<E> list) // get the tail of a list

List_1<E> list.empty_list() // create an empty list

<E, F extends E> List_1<E> list.cons(F head, List_1<E> tail)

// construct a list with

// the given head and tail

Chapter 16: Foreign language interface 128

16.4 Using foreign types from Mercury

Types defined in a foreign language can be accessed in Mercury using a declaration of the
form

:- pragma foreign_type(Lang, MercuryTypeName, ForeignTypeDescriptor).

This defines MercuryTypeName as a synonym for type ForeignTypeDescriptor defined
in the foreign language Lang. MercuryTypeName must be the name of either an abstract
type or a discriminated union type. In both cases, MercuryTypeName must be declared
with ‘:- type’ as usual. The ‘pragma foreign_type’ must not have wider visibility than
the type declaration (if the ‘pragma foreign_type’ declaration is in the interface, the ‘:-
type’ declaration must be also).

If MercuryTypeName names a discriminated union type, that type cannot be the base
type of any subtypes, nor can it be a subtype itself (see Section 4.2.4 [Subtypes], page 43).

ForeignTypeDescriptor defines how the Mercury type is mapped for a particular foreign
language. Specific syntax is given in the language specific information below.

MercuryTypeName is treated as an abstract type at all times in Mercury code. How-
ever, if MercuryTypeName is one of the parameters of a foreign proc for Lang, and the
‘pragma foreign_type’ declaration is visible to the foreign proc, it will be passed to that
foreign proc as specified by ForeignTypeDescriptor.

The same type may have a foreign language definition for more than one foreign language.
The definition used in the generated code will be the one for the foreign language that is most
appropriate for the target language of the compilation (see the language specific information
below for details). All the foreign language definitions must have the same visibility.

A type which has one or more foreign language definitions may also have a Mercury
definition, which must define a discriminated union type. The constructors for this Mer-
cury type will only be visible in Mercury clauses for predicates or functions with ‘pragma
foreign_proc’ clauses for all of the languages for which there are ‘foreign_type’ declara-
tions for the type.

You can also associate assertions about the properties of the foreign type with the
‘foreign_type’ declaration, using the following syntax:

:- pragma foreign_type(Lang, MercuryTypeName, ForeignTypeDescriptor,

[ForeignTypeAssertion, ...]).

Currently, three kinds of assertions are supported.

The ‘can_pass_as_mercury_type’ assertion states that on the C backends, values of
the given type can be passed to and from Mercury code without boxing, via simple casts,
which is faster. This requires the type to be either an integer type or a pointer type, and
requires it to be castable to ‘MR_Word’ and back without loss of information (which means
that its size may not be greater than the size of ‘MR_Word’).

The ‘word_aligned_pointer’ assertion implies ‘can_pass_as_mercury_type’ and ad-
ditionally states that values of the given type are pointer values clear in the tag bits. It
allows the Mercury implementation to avoid boxing values of the given type when the type
appears as the sole argument of a data constructor.

The ‘stable’ assertion is meaningful only in the presence of the ‘can_pass_as_mercury_type’
or ‘word_aligned_pointer’ assertions. It states that either the C type is an integer

Chapter 16: Foreign language interface 129

type, or it is a pointer type pointing to memory that will never change. Together, these
assertions are sufficient to allow tabling (see Section 21.2 [Tabled evaluation], page 164)
and the ‘compare_representation’ primitive to work on values of such types.

Violations of any of these assertions are very likely to result in the generated executable
silently doing the wrong thing, giving no clue to where the problem might be. Since deciding
whether a C type satisfies the conditions of these assertions requires knowledge of the
internals of the Mercury implementation, we do not recommend the use of any of these
assertions unless you are confident of your expertise in those internals.

As with discriminated union types, programmers can specify the unification and/or
comparison predicates to use for values of the type using the following syntax (see Chapter 8
[User-defined equality and comparison], page 73):

:- pragma foreign_type(Lang, MercuryTypeName, ForeignTypeDescriptor)

where equality is EqualityPred, comparison is ComparePred.

You can use Mercury foreign language interfacing declarations which specify language
X to interface to types that are actually written in a different language Y, provided that
X and Y have compatible interface conventions. Support for this kind of compatibility is
described in the language specific information below.

16.5 Using foreign enumerations in Mercury code

While a ‘pragma foreign_type’ declaration imports a foreign type into Mercury, a ‘pragma
foreign_enum’ declaration imports the values of the constants of an enumeration type into
Mercury.

While languages such as C have special syntax for defining enumeration types, in Mer-
cury, an enumeration type is simply an ordinary discriminated union type whose function
symbols all have arity zero.

Given an enumeration type such as

:- type unix_file_permissions

---> user_read

; user_write

; user_executable

; group_read

; group_write

; group_executable

; other_read

; other_write

; other_executable.

the values used to represent each constant are usually decided by the Mercury com-
piler. However, the values assigned this way may not match the values expected by foreign
language code that uses values of the enumeration, and even if they happen to match,
programmers probably would not want to rely on this coincidence.

This is why Mercury supports a mechanism that allows programmers to specify the
representation of each constant in an enumeration type when generating code for a given
target language. This mechanism is the ‘pragma foreign_enum’ declaration, which looks
like this:

Chapter 16: Foreign language interface 130

:- pragma foreign_enum("C", unix_file_permissions/0,

[

user_read - "S_IRUSR",

user_write - "S_IWUSR",

user_executable - "S_IXUSR",

group_read - "S_IRGRP",

group_write - "S_IWGRP",

group_executable - "S_IXGRP",

other_read - "S_IROTH",

other_write - "S_IWOTH",

other_executable - "S_IXOTH"

]).

(Unix systems have a standard header file that defines each of ‘S_IRUSR’, . . . , ‘S_IXOTH’
as macros that each expand to an integer constant; these constants happen not to be the
ones that the Mercury compiler would assign to those constants.)

The general form of ‘pragma foreign_enum’ declarations is

:- pragma foreign_enum("Lang", MercuryType, CtorValues).

where CtorValues is a list of pairs of the form:

[

ctor_0 - "ForeignValue_0",

ctor_1 - "ForeignValue_1",

...

ctor_N - "ForeignValue_N"

]

The first element of each pair is a constant (function symbol of arity 0) of the type
MercuryType, and the second is either a numeric or a symbolic name for the integer value
in the language Lang that the programmer wants to be used to represent that constructor.

The mapping defined by this list of pairs must form a bijection, i.e. the list must map
distinct constructors to distinct values, and vice versa. The Mercury compiler is not required
to check this, because it cannot; even if two symbolic names (such as C macros) are distinct,
they may expand to the same integer in the target language.

Mercury implementations may impose further foreign-language-specific restrictions on
the form that values used to represent enumeration constructors may take. See the language
specific information below for details.

It is an error for any given MercuryType to be the subject of more than one ‘pragma
foreign_enum’ declaration for any given foreign language, since that would amount to an
attempt to specify two or more (probably) conflicting representations for each of the type’s
function symbols.

A ‘pragma foreign_enum’ declaration must occur in the implementation section of the
module that defines the type MercuryType. Because of this, the names of the constants
need not and must not be module qualified.

Note that the default comparison for types that are the subject of a ‘pragma
foreign_enum’ declaration will be defined by the foreign values, rather than the order of
the constructors in the type declaration (as would otherwise be the case).

Chapter 16: Foreign language interface 131

16.6 Using Mercury enumerations in foreign code

A ‘pragma foreign_enum’ declaration imports the values of the constants of an enumeration
type into Mercury. However, sometimes one needs the reverse: the ability to export the
values of the constants of an enumeration type (whether those values were assigned by
‘foreign_enum’ pragmas or not) from Mercury to foreign language code in ‘foreign_proc’
and ‘foreign_code’ pragmas. This is what ‘pragma foreign_export_enum’ declarations
are for.

These pragmas have the following general form:

:- pragma foreign_export_enum("Lang", MercuryType,

Attributes, Overrides).

When given such a pragma, the compiler will define a symbolic name in language Lang
for each of the constructors of MercuryType (which must be an enumeration type). Each
symbolic name allows code in that foreign language to create a value corresponding to that
of the constructor it represents. (The exact mechanism used depends upon the foreign
language; see the language specific information below for further details.)

For each foreign language, there is a default mapping between the name of a Mercury
constructor and its symbolic name in the language Lang. This default mapping is not
required to map every valid constructor name to a valid name in language Lang ; where
it does not, the programmer must specify a valid symbolic name. The programmer may
also choose to map a constructor to a symbolic name that differs from the one supplied
by the default mapping for language Lang. Overrides is a list whose elements are pairs of
constructor names and strings. The latter specify the name that the implementation should
use as the symbolic name in the foreign language. Overrides has the following form:

[cons_I - "symbol_I", ..., cons_J - "symbol_J"]

This can be used to provide either a valid symbolic name where the default mapping
does not, or to override a valid symbolic name generated by the default mapping. This
argument may be omitted if Overrides is empty.

The argument Attributes is a list of optional attributes. If empty, it may be omitted from
the ‘pragma foreign_export_enum’ declaration if the Overrides argument is also omitted.
The following attributes must be supported by all Mercury implementations.

‘prefix(Prefix)’
Prefix each symbolic name, regardless of how it was generated, with the string
Prefix. A ‘pragma foreign_export_enum’ declaration may contain at most one
‘prefix’ attribute.

‘uppercase’
Convert any alphabetic characters in a Mercury constructor name to uppercase
when generating the symbolic name using the default mapping. Symbolic names
specified by the programmer using Overrides are not affected by this attribute.
If the ‘prefix’ attribute is also specified, then the prefix is added to the symbolic
name after the conversion to uppercase has been performed, i.e. the characters
in the prefix are not affected by the ‘uppercase’ attribute.

The implementation does not check the validity of a symbolic name in the foreign lan-
guage until after the effects of any attributes have been applied. This means that attributes
may cause an otherwise valid symbolic name to become invalid, or vice versa.

Chapter 16: Foreign language interface 132

A Mercury module may contain ‘pragma foreign_export_enum’ declarations that refer
to imported types, subject to the usual visibility restrictions.

A Mercury module, or program, may contain more than one ‘pragma
foreign_export_enum’ declaration for a given Mercury type for a given lan-
guage. This can be useful when a project is transitioning from using one naming scheme
for Mercury constants in foreign code to another naming scheme.

It is an error if the mapping between constructors and symbolic names in a ‘pragma
foreign_export_enum’ declaration does not form a bijection. It is also an error if two
separate ‘pragma foreign_export_enum’ declarations for a given foreign language, whether
or not for the same type, specify the same symbolic name, since in that case, the Mercury
compiler would generate two conflicting definitions for that symbolic name. However, the
Mercury implementation is not required to check either condition.

A ‘pragma foreign_export_enum’ declaration may occur only in the implementation
section of a module.

16.7 Adding foreign declarations

Foreign language declarations (such as type declarations, header file inclusions or macro def-
initions) can be included in the Mercury source file as part of a ‘foreign_decl’ declaration
of the form

:- pragma foreign_decl("Lang", DeclCode).

This declaration will have effects equivalent to including the specified DeclCode in an
automatically generated source file of the specified programming language, in a place appro-
priate for declarations, and linking that source file with the Mercury program (after having
compiled it with a compiler for the specified programming language, if appropriate).

Entities declared in ‘pragma foreign_decl’ declarations are visible in ‘pragma
foreign_code’, ‘pragma foreign_type’, ‘pragma foreign_proc’, and ‘pragma
foreign_enum’ declarations that specify the same foreign language and occur in the same
Mercury module.

By default, the contents of ‘pragma foreign_decl’ declarations are also visible in the
same kinds of declarations in other modules that import the module containing the ‘pragma
foreign_decl’ declaration. This is because they may be required to make sense of types de-
fined using ‘pragma foreign_type’ and/or predicates defined using ‘pragma foreign_proc’
in the containing module, and these may be visible in other modules, especially in the pres-
ence of intermodule optimization,

If you do not want the contents of a ‘pragma foreign_decl’ declaration to be visible in
foreign language code in other modules, you can use the following variant of the declaration:

:- pragma foreign_decl("Lang", local, DeclCode).

Note: currently only the C backend supports this variant of the ‘pragma foreign_decl’
declaration.

The Melbourne Mercury implementation additionally supports the forms

:- pragma foreign_decl("Lang", include_file("Path")).

:- pragma foreign_decl("Lang", local, include_file("Path")).

These have the same effects as the standard forms except that the contents of the file
referenced by Path are included in place of the string literal in the last argument, without

Chapter 16: Foreign language interface 133

further interpretation. Path may be an absolute path to a file, or a path to a file relative
to the directory that contains the source file of the module containing the declaration. The
interpretation of the path is platform-dependent. If the filesystem uses a different character
set or encoding from the Mercury source file (which must be UTF-8), the file may not be
found.

‘mmc --make’ and ‘mmake’ treat included files as dependencies of the module.

16.8 Declaring Mercury exports to other modules

The declarations for Mercury predicates or functions exported to a foreign language
using a ‘pragma foreign_export’ declaration are visible to foreign code in a ‘pragma
foreign_code’ or ‘pragma foreign_proc’ declaration of the same module, and also in
those of any submodules. By default, they are not visible to the foreign code in ‘pragma
foreign_code’ or ‘pragma foreign_proc’ declarations in any other module, but this
default can be overridden (giving access to all other modules) using a declaration of the
form:

:- pragma foreign_import_module("Lang", ImportedModule).

where ImportedModule is the name of the module containing the ‘pragma foreign_export’
declarations.

If Lang is "C", this is equivalent to

:- pragma foreign_decl("C", "#include ""ImportedModule.mh""").

where ‘ImportedModule.mh’ is the automatically generated header file containing the C
declarations for the predicates and functions exported to C.

‘pragma foreign_import_module’ should be used instead of the explicit
#include because ‘pragma foreign_import_module’ tells the implementation that
‘ImportedModule.mh’ must be built before the object file for the module containing the
‘pragma foreign_import_module’ declaration.

Note that the Melbourne Mercury implementation often behaves as if ‘pragma
foreign_import_module’ declarations were implicitly added to modules. However,
programmers should not should not depend on this behaviour; they should always write
explicit ‘pragma foreign_import_module’ declarations wherever they are needed.

16.9 Adding foreign definitions

Definitions of foreign language entities (such as functions or global variables) may be in-
cluded using a declaration of the form

:- pragma foreign_code("Lang", Code).

This declaration will have effects equivalent to including the specified Code in an auto-
matically generated source file of the specified programming language, in a place appropriate
for definitions, and linking that source file with the Mercury program (after having compiled
it with a compiler for the specified programming language, if appropriate).

Entities declared in ‘pragma foreign_code’ declarations are visible in ‘pragma
foreign_proc’ declarations that specify the same foreign language and occur in the same
Mercury module.

The Melbourne Mercury implementation additionally supports the form

Chapter 16: Foreign language interface 134

:- pragma foreign_code("Lang", include_file("Path")).

This has the same effect as the standard form except that the contents of the file ref-
erenced by Path are included in place of the string literal in the last argument, without
further interpretation. Path may be an absolute path to a file, or a path to a file relative
to the directory that contains the source file of the module containing the declaration. The
interpretation of the path is platform-dependent. If the filesystem uses a different character
set or encoding from the Mercury source file (which must be UTF-8), the file may not be
found.

‘mmc --make’ and ‘mmake’ treat included files as dependencies of the module.

16.10 Language specific bindings

All Mercury implementations should support interfacing with C. The set of other languages
supported is implementation-defined. A suitable compiler or assembler for the foreign lan-
guage must be available on the system.

The Melbourne Mercury implementation supports interfacing with the following lan-
guages:

‘C’ Use the string "C" to set the foreign language to C.

‘C#’ Use the string "C#" to set the foreign language to C#.

‘Java’ Use the string "Java" to set the foreign language to Java.

16.10.1 Interfacing with C

16.10.1.1 Using pragma foreign type for C

A C ‘pragma foreign_type’ declaration has the form:

:- pragma foreign_type("C", MercuryTypeName, "CForeignType").

For example,

:- pragma foreign_type("C", long_double, "long double").

The CForeignType can be any C type name that obeys the following restrictions. Func-
tion types, array types, and incomplete types are not allowed. The type name must be
such that when declaring a variable in C of that type, no part of the type name is required
after the variable name. (This rule prohibits, for example, function pointer types such as
‘void (*)(void)’; however, it would be OK to use a typedef name which was defined as a
function pointer type.)

C preprocessor directives (such as ‘#if’) may not be used in CForeignType. (You can
however use a typedef name that refers to a type defined in a ‘pragma foreign_decl’ decla-
ration, and the ‘pragma foreign_decl’ declaration may contain C preprocessor directives.)

If the MercuryTypeName is the type of a parameter of a procedure defined using ‘pragma
foreign_proc’, it will be passed to the foreign proc’s foreign language code as CForeign-
Type.

Furthermore, any Mercury procedure exported with ‘pragma foreign_export’ will use
CForeignType as the type for any parameters whose Mercury type is MercuryTypeName.

The builtin Mercury type c_pointermay be used to pass C pointers between C functions
which are called from Mercury. For example:

Chapter 16: Foreign language interface 135

:- module pointer_example.

:- interface.

:- type complicated_c_structure.

% Initialise the abstract C structure that we pass around in Mercury.

:- pred initialise_complicated_structure(complicated_c_structure::uo) is det.

% Perform a calculation on the C structure.

:- pred do_calculation(int::in, complicated_c_structure::di,

complicated_c_structure::uo) is det.

:- implementation.

% Our C structure is implemented as a c_pointer.

:- type complicated_c_structure

---> complicated_c_structure(c_pointer).

:- pragma foreign_decl("C",

extern struct foo *init_struct(void);

extern struct foo *perform_calculation(int, struct foo *);

");

:- pragma foreign_proc("C",

initialise_complicated_structure(Structure::uo),

[will_not_call_mercury, may_call_mercury],

"

Structure = init_struct();

").

:- pragma foreign_proc("C",

do_calculation(Value::in, Structure0::di, Structure::uo),

[will_not_call_mercury, may_call_mercury],

"

Structure = perform_calculation(Value, Structure0);

").

We strongly recommend the use of ‘pragma foreign_type’ instead of c_pointer as the
use of ‘pragma foreign_type’ results in more type-safe code.

16.10.1.2 Using pragma foreign enum for C

Foreign enumeration values in C must be constants of type MR_Integer. A foreign enumer-
ation value may be specified by one of the following:

• An integer literal.

• An enumeration constant.

• A preprocessor macro that expands to either an integer literal or an enumeration con-
stant.

Chapter 16: Foreign language interface 136

16.10.1.3 Using pragma foreign export enum for C

For C the symbolic names generated by a ‘pragma foreign_export_enum’ must form
valid C identifiers. These identifiers are used as the names of preprocessor macros.
The body of each of these macros expands to a value that is identical to that of the
constructor to which the symbolic name corresponds in the mapping established by the
‘pragma foreign_export_enum’ declaration.

As noted in the Section 16.3.1 [C data passing conventions], page 122, the type of these
values is MR_Word.

The default mapping used by ‘pragma foreign_export_enum’ declarations for C is to
use the Mercury constructor name as the base of the symbolic name. For example, the
symbolic name for the Mercury constructor ‘foo’ would be foo.

16.10.1.4 Using pragma foreign proc for C

The input and output variables will have C types corresponding to their Mercury types, as
determined by the rules specified in Section 16.3.1 [C data passing conventions], page 122.

The C code fragment may declare local variables, up to a total size of 10kB for the
procedure. If a procedure requires more than this for its local variables, the code can
be moved into a separate function (defined in a ‘pragma foreign_code’ declaration, for
example).

The C code fragment should not declare any labels or static variables unless there is also
a ‘pragma no_inline’ declaration or a ‘may_not_duplicate’ foreign code attribute for the
procedure. The reason for this is that otherwise the Mercury implementation may inline
the procedure by duplicating the C code fragment for each call. If the C code fragment
declared a static variable, inlining it in this way could result in the program having multiple
instances of the static variable, rather than a single shared instance. If the C code fragment
declared a label, inlining it in this way could result in an error due to the same label being
defined twice inside a single C function.

C code in a pragma foreign_proc declaration for any procedure whose determinism
indicates that it can fail must assign a truth value to the macro SUCCESS_INDICATOR. For
example:

:- pred string.contains_char(string, character).

:- mode string.contains_char(in, in) is semidet.

:- pragma foreign_proc("C",

string.contains_char(Str::in, Ch::in),

[will_not_call_mercury, promise_pure],

"

SUCCESS_INDICATOR = (strchr(Str, Ch) != NULL);

").

SUCCESS_INDICATOR should not be used other than as the target of an assignment. (For
example, it may be #defined to a register, so you should not try to take its address.)
Procedures whose determinism indicates that they cannot fail should not access SUCCESS_
INDICATOR.

Arguments whose mode is input will have their values set by the Mercury implementation
on entry to the C code. If the procedure succeeds, the C code must set the values of all

Chapter 16: Foreign language interface 137

output arguments. If the procedure fails, the C code need only set SUCCESS_INDICATOR to
false (zero).

The behaviour of a procedure defined using a ‘pragma foreign_proc’ declaration whose
body contains a return statement is undefined.

16.10.1.5 Using pragma foreign export for C

A ‘pragma foreign_export’ declaration for C has the form:

:- pragma foreign_export("C", MercuryMode, "C_Name").

For example,

:- pragma foreign_export("C", foo(in, in, out), "FOO").

For each Mercury module containing ‘pragma foreign_export’ declarations for C, the
Mercury implementation will automatically create a header file for that module which de-
clares a C function C Name() for each of the ‘pragma foreign_export’ declarations. Each
such C function is the C interface to the specified Mercury procedure.

The type signature of the C interface to a Mercury procedure is determined as follows.
Mercury types are converted to C types according to the rules in Section 16.3.1 [C data
passing conventions], page 122. Input arguments are passed by value. For output arguments,
the caller must pass the address in which to store the result. If the Mercury procedure can
fail, then its C interface function returns a truth value indicating success or failure. If
the Mercury procedure is a Mercury function that cannot fail, and the function result has
an output mode, then the C interface function will return the Mercury function result
value. Otherwise the function result is appended as an extra argument. Arguments of type
‘io.state’ or ‘store.store(_)’ are not passed at all. (The reason for this is that these
types represent mutable state, and in C modifications to mutable state are done via side
effects, rather than argument passing.)

Calling polymorphically typed Mercury procedures from C is a little bit more difficult
than calling ordinary (monomorphically typed) Mercury procedures. The simplest method
is to just create monomorphic forwarding procedures that call the polymorphic procedures,
and export them, rather than exporting the polymorphic procedures.

If you do export a polymorphically typed Mercury procedure, the compiler will prepend
one ‘type_info’ argument to the parameter list of the C interface function for each distinct
type variable in the Mercury procedure’s type signature. The caller must arrange to pass in
appropriate ‘type_info’ values corresponding to the types of the other arguments passed.
These ‘type_info’ arguments can be obtained using the Mercury ‘type_of’ function in the
Mercury standard library module ‘type_desc’.

To use the C declarations produced see Section 16.10.1.6 [Using pragma foreign decl for
C], page 137.

Throwing an exception across the C interface is not supported. That is, if a Mercury
procedure that is exported to C using ‘pragma foreign_export’ throws an exception which
is not caught within that procedure, then you will get undefined behaviour.

16.10.1.6 Using pragma foreign decl for C

Any macros, function prototypes, or other C declarations that are used in ‘foreign_code’,
‘foreign_type’ or ‘foreign_proc’ pragmas must be included using a ‘foreign_decl’ dec-
laration of the form

Chapter 16: Foreign language interface 138

:- pragma foreign_decl("C", HeaderCode).

HeaderCode can be a C ‘#include’ line, for example

:- pragma foreign_decl("C", "#include <math.h>")

or

:- pragma foreign_decl("C", "#include ""tcl.h""").

or it may contain any C declarations, for example

:- pragma foreign_decl("C", "

extern int errno;

#define SIZE 200

struct Employee {

char name[SIZE];

};

extern int bar;

extern void foo(void);

").

Mercury automatically includes certain headers such as <stdlib.h>, but you should
not rely on this, as the set of headers which Mercury automatically includes is subject to
change.

If a Mercury predicate or function exported using a ‘pragma foreign_export’ declara-
tion is to be used within a ‘:- pragma foreign_code’ or ‘:- pragma foreign_proc’ decla-
ration the header file for the module containing the ‘pragma foreign_export’ declaration
should be included using a ‘pragma foreign_import_module’ declaration, for example

:- pragma foreign_import_module("C", exporting_module).

16.10.1.7 Using pragma foreign code for C

Definitions of C functions or global variables may be included using a declaration of the
form

:- pragma foreign_code("C", Code).

For example,

:- pragma foreign_code("C", "

int bar = 42;

void foo(void) {}

").

Such code is copied verbatim into the generated C file.

16.10.1.8 Memory management for C

Passing pointers to dynamically-allocated memory from Mercury to code written in other
languages, or vice versa, is in general implementation-dependent.

The current Mercury implementation supports two different methods of memory man-
agement: conservative garbage collection, or no garbage collection. The latter is suitable
only for programs with very short running times (less than a second), which makes the
former the standard method for almost all Mercury programs.

Conservative garbage collection makes inter-language calls simplest. Mercury uses the
Boehm-Demers-Weiser conservative garbage collector, which we also call simply Boehm

Chapter 16: Foreign language interface 139

gc. This has its own set of functions for allocating memory blocks, such as ‘MR_GC_NEW’,
which are documented in ‘runtime/mercury_memory.h’. Memory blocks allocated by these
functions, either in C code generated by the Mercury compiler or in C code hand written
by programmers, are automatically reclaimed when they are no longer referred to either
from the stack, from global variables, or from other memory blocks allocated by Boehm
gc functions. Note that these are the only places where Boehm gc looks for pointers to
the blocks it has allocated. If the only pointers to such a block occur in other parts of
memory, such as in memory blocks allocated by ‘malloc’, the Boehm collector won’t see
them, and may collect the block prematurely. Programmers can avoid this either by not
storing pointers to Boehm-allocated memory in malloc-allocated blocks, or by storing them
e.g. on the stack as well.

Boehm gc recognizes pointers to the blocks it has allocated only if they point either to
the start to the block, or to a byte in the first word of the block; pointers into the middle
of a block beyond the first word won’t keep the block alive.

Pointers to Boehm-allocated memory blocks can be passed freely between Mercury and
C code provided these restrictions are observed.

Note that the Boehm collector cannot and does not recover memory allocated by other
methods, such as ‘malloc’.

When using no garbage collection, heap storage is reclaimed only on backtracking. This
requires programmers to be careful not to retain pointers to memory on the Mercury heap
after Mercury has backtracked to before the point where that memory was allocated. They
must also avoid the use of the macros MR_list_empty() and MR_list_cons(). (The reason
for this is that they may access Mercury’s ‘MR_hp’ register, which might not be valid in C
code. Using them in the bodies of procedures defined using ‘pragma foreign_proc’ with
‘will_not_call_mercury’ would probably work, but we don’t advise it.) Instead, you can
write Mercury functions to perform these actions and use ‘pragma foreign_export’ to ac-
cess them from C. This alternative method also works with conservative garbage collection.

Future Mercury implementations may use non-conservative methods of garbage collec-
tion. For such implementations, it will be necessary to explicitly register pointers passed
to C with the garbage collector. The mechanism for doing this has not yet been decided
on. It would be desirable to provide a single memory management interface for use when
interfacing with other languages that can work for all methods of memory management,
but more implementation experience is needed before we can formulate such an interface.

16.10.1.9 Linking with C object files

A Mercury implementation should allow you to link with object files or libraries that were
produced by compiling C code. The exact mechanism for linking with C object files is
implementation-dependent. The following text describes how it is done for the Melbourne
Mercury implementation.

To link an existing object file or archive of object files into your Mercury code, use the
command line option ‘--link-object’. For example, the following will link the object file
‘my_function.o’ from the current directory when compiling the program ‘prog’:

mmc --link-object my_functions.o prog

The command line option ‘--library’ (or ‘-l’ for short) can be used to link an exist-
ing library into your Mercury code. For example, the following will link the library file

Chapter 16: Foreign language interface 140

‘libfancy_library.a’, or perhaps the shared version ‘libfancy_library.so’, from the
directory ‘/usr/local/contrib/lib’, when compiling the program ‘prog’:

mmc -R/usr/local/contrib/lib -L/usr/local/contrib/lib -lfancy_library prog

As illustrated by the example, the command line options ‘-R’, ‘-L’ and ‘-l’, have the
same meaning as they do with the Unix linker.

For more information, see the “Libraries” chapter of the Mercury User’s Guide.

16.10.2 Interfacing with C#

16.10.2.1 Using pragma foreign type for C#

A C# ‘pragma foreign_type’ declaration has the form:

:- pragma foreign_type("C#", MercuryTypeName, "C#-Type").

The C#-Type can be any accessible C# type.

The effect of this declaration is that Mercury values of type MercuryTypeName will be
passed to and from C# foreign procs as having type C#-Type.

Furthermore, any Mercury procedure exported with ‘pragma foreign_export’ will use
C#-Type as the type for any parameters whose Mercury type is MercuryTypeName.

16.10.2.2 Using pragma foreign enum for C#

Foreign enumeration values in C# must be a constant value expression which is a valid
initializer within an enumeration of underlying type int.

16.10.2.3 Using pragma foreign export enum for C#

For C# the symbolic names generated by a ‘pragma foreign_export_enum’ must form
valid C# identifiers. These identifiers are used as the names of static class members.

The default mapping used by ‘pragma foreign_export_enum’ declarations for C# is to
use the Mercury constructor name as the base of the symbolic name. For example, the
symbolic name for the Mercury constructor ‘foo’ would be foo.

16.10.2.4 Using pragma foreign proc for C#

The C# code from C# ‘pragma foreign_proc’ declarations will be placed in the bodies of
static member functions of an automatically generated C# class. Since such C# code will
become part of a static member function, it must not refer to the this keyword. It may
however refer to static member variables or static member functions declared with ‘pragma
foreign_code’.

The input and output variables for a C# ‘pragma foreign_proc’ will have C# types
corresponding to their Mercury types. The exact rules for mapping Mercury types to C#
types are described in Section 16.3.2 [C# data passing conventions], page 123.

C# code in a pragma foreign_proc declaration for any procedure whose determinism in-
dicates that it can fail must assign a value of type bool to the variable SUCCESS_INDICATOR.
For example:

:- pred string.contains_char(string, character).

:- mode string.contains_char(in, in) is semidet.

Chapter 16: Foreign language interface 141

:- pragma foreign_proc("C#",

string.contains_char(Str::in, Ch::in),

[will_not_call_mercury, promise_pure],

"

SUCCESS_INDICATOR = (Str.IndexOf(Ch) != -1);

").

C# code for procedures whose determinism indicates that they cannot fail should not access
SUCCESS_INDICATOR.

Arguments whose mode is input will have their values set by the Mercury implementation
on entry to the C# code. If the procedure succeeds, the C# code must set the values of all
output arguments. If the procedure fails, the C# code need only set SUCCESS_INDICATOR
to false.

16.10.2.5 Using pragma foreign export for C#

A ‘pragma foreign_export’ declaration for C# has the form:

:- pragma foreign_export("C#", MercuryMode, "C#_Name").

For example,

:- pragma foreign_export("C#", foo(in, in, out), "FOO").

The type signature of the C# interface to a Mercury procedure is as described in Sec-
tion 16.3.2 [C# data passing conventions], page 123.

Calling polymorphically typed Mercury procedures from C# is a little bit more difficult
than calling ordinary (monomorphically typed) Mercury procedures. The simplest method
is to just create monomorphic forwarding procedures that call the polymorphic procedures,
and export them, rather than exporting the polymorphic procedures.

If you do export a polymorphically typed Mercury procedure, the compiler will prepend
one ‘type_info’ argument to the parameter list of the C# interface function for each distinct
type variable in the Mercury procedure’s type signature. The caller must arrange to pass in
appropriate ‘type_info’ values corresponding to the types of the other arguments passed.
These ‘type_info’ arguments can be obtained using the Mercury ‘type_of’ function in the
Mercury standard library module ‘type_desc’.

16.10.2.6 Using pragma foreign decl for C#

‘pragma foreign_decl’ declarations for C# can be used to provide any top-level C# dec-
larations (e.g. ‘using’ declarations or auxiliary class definitions) which are needed by C#
code in ‘pragma foreign_proc’ declarations in that module.

For example:

:- pragma foreign_decl("C#", "

using System;

").

:- pred hello(io.state::di, io.state::uo) is det.

:- pragma foreign_proc("C#",

hello(_IO0::di, _IO::uo),

[will_not_call_mercury, promise_pure],

"

Chapter 16: Foreign language interface 142

// here we can refer directly to Console rather than System.Console

Console.WriteLine(""hello world"");

").

16.10.2.7 Using pragma foreign code for C#

The C# code from ‘pragma foreign_proc’ declarations for C# will be placed in the bodies
of static member functions of an automatically generated C# class. ‘pragma foreign_code’
can be used to define additional members of this automatically generated class, which can
then be referenced by ‘pragma foreign_proc’ declarations for C# from that module.

For example:

:- pragma foreign_code("C#", "

static int counter = 0;

").

:- impure pred incr_counter is det.

:- pragma foreign_proc("C#",

incr_counter,

[will_not_call_mercury], "

counter++;

").

:- semipure func get_counter = int.

:- pragma foreign_proc("C#",

get_counter = (Result::out),

[will_not_call_mercury, promise_semipure],

"

Result = counter;

").

16.10.3 Interfacing with Java

16.10.3.1 Using pragma foreign type for Java

A Java ‘pragma foreign_type’ declaration has the form:

:- pragma foreign_type("Java", MercuryTypeName, "JavaType").

The JavaType can be any accessible Java type.

The effect of this declaration is that Mercury values of type MercuryTypeName will be
passed to and from Java foreign procs as having type JavaType.

Furthermore, any Mercury procedure exported with ‘pragma foreign_export’ will use
JavaType as the type for any parameters whose Mercury type is MercuryTypeName.

16.10.3.2 Using pragma foreign enum for Java

‘pragma foreign_enum’ is currently not supported for Java.

Chapter 16: Foreign language interface 143

16.10.3.3 Using pragma foreign export enum for Java

For Java the symbolic names generated by a ‘pragma foreign_export_enum’ must form
valid Java identifiers. These identifiers are used as the names of static class members which
are assigned instances of the enumeration class.

The equals method should be used for equality testing of enumeration values in Java
code.

The default mapping used by ‘pragma foreign_export_enum’ declarations for Java is
to use the Mercury constructor name as the base of the symbolic name. For example, the
symbolic name for the Mercury constructor ‘foo’ would be foo.

16.10.3.4 Using pragma foreign proc for Java

The Java code from Java ‘pragma foreign_proc’ declarations will be placed in the bodies
of static member functions of an automatically generated Java class. Since such Java code
will become part of a static member function, it must not refer to the this keyword. It may
however refer to static member variables or static member functions declared with ‘pragma
foreign_code’.

The input and output variables for a Java ‘pragma foreign_proc’ will have Java types
corresponding to their Mercury types. The exact rules for mapping Mercury types to Java
types are described in Section 16.3.3 [Java data passing conventions], page 125.

The Java code in a pragma foreign_proc declaration for a procedure whose determinism
indicates that it can fail must assign a value of type boolean to the variable SUCCESS_

INDICATOR. For example:

:- pred string.contains_char(string, character).

:- mode string.contains_char(in, in) is semidet.

:- pragma foreign_proc("Java",

string.contains_char(Str::in, Ch::in),

[will_not_call_mercury, promise_pure],

"

SUCCESS_INDICATOR = (Str.IndexOf(Ch) != -1);

").

Java code for procedures whose determinism indicates that they cannot fail should not refer
to the SUCCESS_INDICATOR variable.

Arguments whose mode is input will have their values set by the Mercury implementation
on entry to the Java code. With our current implementation, the Java code must set the
values of all output variables, even if the procedure fails (i.e. sets the SUCCESS_INDICATOR

variable to false).

16.10.3.5 Using pragma foreign export for Java

A ‘pragma foreign_export’ declaration for Java has the form:

:- pragma foreign_export("Java", MercuryMode, "Java_Name").

For example,

:- pragma foreign_export("Java", foo(in, in, out), "FOO").

Chapter 16: Foreign language interface 144

The type signature of the Java interface to a Mercury procedure is as described in
Section 16.3.3 [Java data passing conventions], page 125.

Calling polymorphically typed Mercury procedures from Java is a little bit more difficult
than calling ordinary (monomorphically typed) Mercury procedures. The simplest method
is to just create monomorphic forwarding procedures that call the polymorphic procedures,
and export them, rather than exporting the polymorphic procedures.

If you do export a polymorphically typed Mercury procedure, the compiler will prepend
one ‘type_info’ argument to the parameter list of the Java interface function for each
distinct type variable in the Mercury procedure’s type signature. The caller must arrange
to pass in appropriate ‘type_info’ values corresponding to the types of the other arguments
passed. These ‘type_info’ arguments can be obtained using the Mercury ‘type_of’ function
in the Mercury standard library module ‘type_desc’.

16.10.3.6 Using pragma foreign decl for Java

‘pragma foreign_decl’ declarations for Java can be used to provide any top-level Java
declarations (e.g. ‘import’ declarations or auxiliary class definitions) which are needed by
Java code in ‘pragma foreign_proc’ declarations in that module.

For example:

:- pragma foreign_decl("Java", "

import javax.swing.*;

import java.awt.*;

class MyApplet extends JApplet {

public void init() {

JLabel label = new JLabel(""Hello, world"");

label.setHorizontalAlignment(JLabel.CENTER);

getContentPane().add(label);

}

}

").

:- pred hello(io.state::di, io.state::uo) is det.

:- pragma foreign_proc("Java",

hello(_IO0::di, _IO::uo),

[will_not_call_mercury],

"

MyApplet app = new MyApplet();

// ...

").

16.10.3.7 Using pragma foreign code for Java

The Java code from ‘pragma foreign_proc’ declarations for Java will be placed in the
bodies of static member functions of an automatically generated Java class. ‘pragma
foreign_code’ can be used to define additional members of this automatically generated
class, which can then be referenced by ‘pragma foreign_proc’ declarations for Java from
that module.

For example:

Chapter 16: Foreign language interface 145

:- pragma foreign_code("Java", "

static int counter = 0;

").

:- impure pred incr_counter is det.

:- pragma foreign_proc("Java",

incr_counter,

[will_not_call_mercury],

"

counter++;

").

:- semipure func get_counter = int.

:- pragma foreign_proc("Java",

get_counter = (Result::out),

[will_not_call_mercury, promise_semipure],

"

Result = counter;

").

Chapter 17: Impurity declarations 146

17 Impurity declarations

In order to efficiently implement certain predicates, it is occasionally necessary to venture
outside pure logic programming. Other predicates cannot be implemented at all within the
paradigm of logic programming, for example, all solutions predicates. Such predicates are
often written using the foreign language interface. Sometimes, however, it would be more
convenient, or more efficient, to write such predicates using the facilities of Mercury. For
example, it is much more convenient to access arguments of compound Mercury terms in
Mercury than in C, and the ability of the Mercury compiler to specialize code can make
higher-order predicates written in Mercury significantly more efficient than similar C code.

One important aim of Mercury’s impurity system is to make the distinction between
the pure and impure code very clear. This is done by requiring every impure predicate or
function to be so declared, and by requiring every call to an impure predicate or function
to be flagged as such. Predicates or functions that are implemented in terms of impure
predicates or functions are assumed to be impure themselves unless they are explicitly
promised to be pure.

Please note that the facilities described here are needed only very rarely. The main
intent is for implementing language primitives such as the all solutions predicates, or for
implementing interfaces to foreign language libraries using the foreign language interface.
Any other use of ‘impure’ or ‘semipure’ probably indicates either a weakness in the Mer-
cury standard library, or the programmer’s lack of familiarity with the standard library.
Newcomers to Mercury are hence encouraged to skip this section.

17.1 Choosing the right level of purity

Mercury distinguishes three “levels” of purity:

pure For pure procedures, the set of solutions depends only on the values of the
input arguments. They do not interact with the “real” world (i.e., do any
input/output) without taking an io.state (see Chapter 4 [Types], page 38) as
input and returning one as output, and do not change the value of any data
structure that will not be undone on backtracking (unless the data structure
would be unreachable on backtracking). Note that equality axioms are impor-
tant when considering the value of data structures. The declarative semantics
of pure predicates is never affected by the invocation of other predicates. It is
possible for the invocation of pure predicates to affect the operational behaviour
of non-pure predicates and vice versa.

By default, Mercury predicates and functions are pure. Without using the
foreign language interface, writing mode-specific clauses or calling other impure
predicates and functions, it is impossible to write impure code in Mercury.

semipure Semipure predicates are just like pure predicates, except that their declarative
semantics may be affected by the invocation of impure predicates. That is, they
are sensitive to the state of the computation other than as reflected by their
input arguments, though they do not affect the state themselves.

impure Impure predicates may perform I/O or modify hidden state, even if these side
effects alter the operational semantics of other code. However, impure predi-

Chapter 17: Impurity declarations 147

cates may not change the declarative semantics of pure code. They must be
type-, mode-, determinism- and uniqueness correct.

17.2 Purity ordering

The three levels of purity have a total ordering defined upon them (which we will simply
call the purity), where pure > semipure > impure.

17.3 Impurity semantics

It is important to the proper operation of impure and semipure code, to the flexibility of
the compiler to optimize pure code, and to the semantics of the Mercury language, that
a clear distinction be drawn between ordinary Mercury code and imperative code written
with Mercury syntax. How this distinction is drawn will be explained below; the purpose
of this section is to explain the semantics of programs with impure predicates.

A declarative semantics of impure Mercury code would be largely useless, because the
declarative semantics cannot capture the intent of the programmer. Impure predicates are
executed for their side-effects, which by definition are not part of their declarative semantics.
Thus it is the operational semantics of impure predicates that Mercury must specify, and
Mercury implementations must respect.

The operational semantics of a Mercury predicate which invokes impure code is a mod-
ified form of the strict sequential semantics (see Chapter 15 [Formal semantics], page 115).
Impure goals may not be reordered relative to any other goals; not even “minimal” re-
ordering as implied by the modes is permitted. If any such reordering is needed, this is a
mode error. However, pure and semipure goals may be reordered as the compiler desires
(within the bounds of the semantics the user has specified for the program) as long as they
are not moved across an impure goal. Execution of impure goals is strict: they must be
executed if they are reached, even if it can be determined that the computation cannot lead
to successful termination.

Semipure goals can be given a “contextual” declarative semantics. They cannot have
any side-effects, so it is expected that, given the context in which they are called (relative
to any impure goals in the program), their declarative semantics fully captures the intent
of the programmer. Thus a semipure goal has a perfectly consistent declarative semantics,
until an impure goal is reached. After that, it has another (possibly different) declarative
semantics, until the next impure goal is executed, and so on. Mercury implementations
must respect this contextual nature of the semantics of semipure goals; within a single
context, an implementation may treat a semipure goal as if it were pure.

17.4 Declaring impure functions and predicates

Every Mercury predicate or function has exactly two purity values associated with it. One
is the declared purity of the predicate or function, which is given by the programmer. The
other value is the inferred purity, which is calculated from the purity of goals in the body
of the predicate or function.

A predicate is declared to be impure or semipure by preceding the word pred in its pred
declaration with impure or semipure, respectively. Similarly, a function is declared impure
or semipure by preceding the word func in its func declaration with impure or semipure.
That is, the declarations

Chapter 17: Impurity declarations 148

:- impure pred Pred(Arguments...).

:- semipure pred Pred(Arguments...).

:- impure func Func(Arguments...) = Result.

:- semipure func Func(Arguments...) = Result.

declare the predicate Pred and the function Func to be impure and semipure, respectively.

Type class methods may also be declared as impure or semipure by preceding the word
pred or func with the appropriate purity level. An instance of the type class must provide
method implementations that are at least as pure as the method declaration.

17.5 Marking a goal as impure

If predicate p/N is declared to be impure (semipure) then all calls to p/N must be annotated
with impure (semipure):

impure p(X1, X2, ..., XN)

If function f/N is declared to be impure (semipure) then all applications of f/N must
be obtained by unification with a variable and the unification goal as a whole be annotated
with impure

impure X = f(X1, X2, ..., XN)

Any call or unification goal containing a non-local variable with inst any that appears
in a negated context (i.e., in a negation or in the condition of an if-then-else goal) must be
given an impure annotation because it may violate referential transparency.

Compound goals should not have purity annotations.

The compiler will report an error if a required purity annotation is omitted from a call or
unification goal or if a semipure annotation is used where an impure annotation is required.
The compiler will report a warning if a semipure goal is annotated with impure or a pure
goal is annotated with semipure.

The requirement that impure or semipure calls be marked with impure or semipure

allows someone reading the code to tell which goals are not pure, making code which relies
on side effects somewhat less mysterious. Furthermore, it means that if a call is not preceded
by impure or semipure, then the reader can rely on the call having a proper declarative
semantics, without hidden side-effects.

17.6 Promising that a predicate is pure

Predicates that are implemented in terms of impure or semipure predicates are assumed to
have the least of the purity of the goals in their body. The declared purity of a predicate
must not be more pure than the inferred purity; if it is, the compiler must generate an
error. If the declared purity is less pure than the inferred purity, the compiler should issue
a warning (this is similar to the above case for goals). Because the inferred purity of the
predicate is calculated from the declared purity of the calls it executes, the lowest purity
bound is propagated up from callee to caller through the program.

In some cases, the impurity of a predicate’s body is an implementation detail which
should not be exposed to callers. These predicates are pure or semipure even though
they call impure or semipure predicates. The only way for the programmer to stop the
propagation of impurity is to explicitly promise that the predicate or function is pure or
semipure.

Chapter 17: Impurity declarations 149

Of course, the Mercury compiler cannot verify that the predicate’s purity matches the
promise, so it is the programmer’s responsibility to ensure this. If a predicate is promised
pure or semipure and is not, the behaviour of the program is undefined.

The programmer may promise that a predicate or function is pure or semipure using the
promise_pure and promise_semipure pragmas:

:- pragma promise_pure(Name/Arity).

:- pragma promise_semipure(Name/Arity).

Programmers should be very careful about mixing code that is promised pure with
impure predicates or functions that may manipulate the same hidden state (for example, the
impure predicates used to implement a predicate that is promised pure); the ‘promise_pure’
declaration is supposed to promise that impure code cannot change the declarative semantics
of pure code. The module system can be used to minimize the possibility of making errors
with such code, by keeping impure predicates or functions behind the interface where code
is promised pure.

Note that the ‘promise_pure’, ‘promise_semipure’, and ‘promise_impure’ scopes de-
scribed in Section 3.2 [Goals], page 18 may be used to promise purity at the finer level of
goals within clauses.

17.7 An example using impurity

The following example illustrates how a pure predicate may be implemented using impure
code. Note that this code is not reentrant, and so is not useful as is. It is meant only as an
example.

:- pragma foreign_decl("C", "#include <limits.h>").

:- pragma foreign_decl("C", "extern MR_Integer max;").

:- pragma foreign_code("C", "MR_Integer max;").

:- impure pred init_max is det.

:- pragma foreign_proc("C",

init_max,

[will_not_call_mercury],

"

max = INT_MIN;

").

:- impure pred set_max(int::in) is det.

:- pragma foreign_proc("C",

set_max(X::in),

[will_not_call_mercury],

"

if (X > max) max = X;

").

:- semipure func get_max = (int::out) is det.

:- pragma foreign_proc("C",

Chapter 17: Impurity declarations 150

get_max = (X::out),

[promise_semipure, will_not_call_mercury],

"

X = max;

").

:- pragma promise_pure(max_solution/2).

:- pred max_solution(pred(int), int).

:- mode max_solution(pred(out) is multi, out) is det.

max_solution(Generator, Max) :-

impure init_max,

(

Generator(X),

impure set_max(X),

fail

;

semipure Max = get_max

).

17.8 Using impurity with higher-order code

Higher-order code can manipulate impure or semipure predicates and functions, provided
that explicit purity annotations are used in three places: on the higher-order types, on
lambda expressions, and on higher-order calls. (There are no purity annotations on higher-
order insts and modes, however.)

17.8.1 Purity annotations on higher-order types

Ordinary higher-order types, such as ‘pred(T1, T2)’ and ‘func(T1, T2) = T’, represent
only pure predicates or pure functions. But for each ordinary higher-order type Foo, there
are two corresponding types ‘semipure Foo ’ and ‘impure Foo ’. These types can be used for
higher-order code that needs to manipulate impure or semipure procedures. For example
the type ‘impure func(int) = int’ represents impure functions from int to int.

There are no implicit conversions and no subtyping relationship between ordinary higher-
order types and the corresponding impure or semipure higher-order types. However, a value
of an ordinary higher-order type can be explicitly “converted” to a value of an impure (or
semipure) higher-order type by wrapping it in an impure (or semipure) lambda expression
that just calls the pure higher-order term.

17.8.2 Purity annotations on lambda expressions

Purity annotations are required on lambda expressions that call semipure or impure code.
Lambda expressions can be declared as ‘semipure’ or ‘impure’ by including such an an-
notation before the ‘pred’ or ‘func’ identifier in the lambda expression. Such lambda
expressions have the corresponding ‘semipure’ or ‘impure’ higher-order type. For example,
the expression

(impure func(X) = Y :- semipure get_max(Y), impure set_max(X))

Chapter 17: Impurity declarations 151

is an example of an impure function lambda expression with type ‘(impure func(int) =

int)’, and the expression

(impure pred(X::in, Y::out) is det :-

semipure get_max(Y),

impure set_max(X))

is an example of an impure predicate lambda expression with type ‘impure pred(int,

int)’.

17.8.3 Purity annotations on higher-order calls

Any calls to impure or semipure higher-order terms must be explicitly annotated as such.
For impure or semipure higher-order predicates, the annotation is indicated by putting
‘impure’ or ‘semipure’ before the call. For example:

:- func foo(impure pred(int)) = int.

:- mode foo(in(pred(out) is det)) = out is det.

foo(ImpurePred) = X1 + X2 :-

% Using higher-order syntax.

impure ImpurePred(X1),

% Using the call/N syntax.

impure call(ImpurePred, X2).

For calling impure or semipure higher-order functions, the notation is different than what
you might expect. In addition to using an ‘impure’ or ‘semipure’ operator on the unification
which invokes the higher-order function application, you must also use ‘impure_apply’ or
‘semipure_apply’ rather than using ‘apply’ or higher-order syntax. For example:

:- func map(impure func(T1) = T2, list(T1)) = list(T2).

map(_ImpureFunc, []) = [].

map(ImpureFunc, [X|Xs]) = [Y|Ys] :-

impure Y = impure_apply(ImpureFunc, X),

impure Ys = map(ImpureFunc, Ys).

Chapter 18: Solver types 152

18 Solver types

Solver types are an experimental addition to the language supporting the implementation
of constraint solvers. A program may place constraints on and between variables of a solver
type, limiting the values those variables may take on before they are actually bound. For
example, if X and Y are variables belonging to a constrained integer solver type, we might
place constraints upon them such that X > 3 + Y and Y =< 7. A later attempt to unify Y

with 10 will fail (it would violate the second constraint); similarly an attempt to unify X

with 5 and Y with 4 would fail (it would violate the first constraint).

18.1 The ‘any’ inst

Variables with solver types can have one of three possible insts: free, ground or any. A
variable with a solver type with inst any may not (yet) be semantically ground, in the
following sense: if a variable is semantically ground, then the set of values it unifies with
form an equivalence class; if a variable is non-ground, then the set of values it unifies with
do not form an equivalence class.

More formally, X is ground if for values Y and Z that unify with X, it is the case that Y
and Z also unify with each other. X is non-ground if there are values Y and Z that unify
with X, but which do not unify with each other.

A non-solver type value will have inst any if it is constructed using one or more inst any
values.

The builtin modes ia and oa are equivalent to in(any) and out(any) respectively.

18.2 Abstract solver type declarations

The type declarations

:- solver type t1.

:- solver type t2(T1, T2).

declare types t1/0 and t2/2 to be abstract solver types. Abstract solver type declarations
are identical to ordinary abstract type declarations except for the solver keyword.

18.3 Solver type definitions

A solver type definition takes the following form:

:- solver type solver_type

where representation is representation_type,

ground is ground_inst,

any is any_inst,

constraint_store is mutable_decls,

equality is equality_pred,

comparison is comparison_pred.

The representation attribute is mandatory. The ground inst and any inst attributes
are optional and default to ground. The constraint_store attribute is mandatory: mu-
table decls must be either a single mutable declaration (see Section 10.6 [Module-local
mutable variables], page 88), or a comma separated list of mutable declarations in brack-
ets. The equality and comparison attributes are optional, although a solver type without

Chapter 18: Solver types 153

equality would not be very useful. The attributes that are not omitted must appear in the
order shown above.

The representation type is the type used to implement the solver type. A two-tier
scheme of this kind is necessary for a number of reasons, including

• a semantic gap is necessary to accommodate the fact that non-ground solver type
values may be represented by ground representation type values (in the context of the
corresponding constraint solver state);

• this approach greatly simplifies the definition of equality and comparison predicates for
the solver type.

The ground inst is the inst associated with representation type values denoting ground

solver type values.

The any inst is the inst associated with representation type values denoting any solver_
type values.

The compiler constructs four impure functions for converting between solver type values
and representation type values (name is the function symbol used to name solver type and
arity is the number of type parameters it takes):

:- impure func ’representation of ground name/arity’(solver_type) =

representation_type.

:- mode ’representation of ground name/arity’(in) =

out(ground_inst) is det.

:- impure func ’representation of any name/arity’(solver_type) =

representation_type.

:- mode ’representation of any name/arity’(in(any)) =

out(any_inst) is det.

:- impure func ’representation to ground name/arity’(representation_type) =

solver_type.

:- mode ’representation to ground name/arity’(in(ground_inst)) =

out is det.

:- impure func ’representation to any name/arity’(representation_type) =

solver_type.

:- mode ’representation to any name/arity’(in(any_inst)) =

out(any) is det.

These functions are impure because of the semantic gap issue mentioned above.

Solver types may be exported from their defining module, but only in an abstract form.
This requires the full definition to appear in the implementation section of the module, and
an abstract declaration like the following in its interface:

:- solver type solver_type.

If a solver type is exported, then its representation type, and, if specified, its equality
and/or comparison predicates must also exported from the same module.

If a solver type has no equality predicate specified, then the compiler will generate an
equality predicate that throws an exception of type ‘exception.software_error/0’ when
called.

Chapter 18: Solver types 154

Likewise, if a solver type has no equality comparison specified, then the
compiler will generate a comparison predicate that throws an exception of type
‘exception.software_error/0’ when called.

If provided, any mutable declarations given for the constraint_store attribute are
equivalent to separate mutable declarations; their association with the solver type is for the
purposes of documentation. That is,

:- solver type t

where ...,

constraint_store is [mutable(a, int, 42, ground, []),

mutable(b, string, "Hi", ground, [])

],

...

is equivalent to

:- solver type t

where ...

:- mutable(a, int, 42, ground, []).

:- mutable(b, string, "Hi", ground, []).

18.4 Implementing solver types

A solver type is an abstraction, implemented using a combination of a private representation
type and a constraint store.

The constraint store is an (impure) piece of state used to keep track of the extant
constraints on variables of the solver type. This will typically be implemented using foreign
code.

It is important that changes to the constraint store are properly trailed (see Section 21.5
[Trailing], page 171) so that changes can be undone on backtracking.

The solver type implementation should provide functions and predicates

• to construct and deconstruct solver type values,

• to place constraints on solver type variables,

• to convert any solver type variables to ground if possible (this is obviously an impure
operation — see Chapter 17 [Impurity], page 146),

• to convert solver type values to non-solver type values (again, this is impure and requires
the argument solver type values be sufficiently ground),

• to ask questions about the extant constraints on solver type variables without con-
straining them further (this too is impure because the set of constraints on a variable
may change during execution of the program).

18.5 Solver types and negated contexts

Mercury’s negation and if-then-else goals (and hence also inequalities and universal quan-
tifications) are implemented using negation as failure, meaning that the failure to find a
proof of one statement is regarded as a proof of its negation. Negation as failure is sound
provided that no non-local variable becomes further bound during the execution of a goal
which may be negated. This includes negated goals themselves, as well as the conditions of

Chapter 18: Solver types 155

if-then-elses, which are negated iff they fail without producing any solution, and the bodies
of pred or func expressions, which may be called or applied in one of the other contexts, or
indeed in another pred or func expression.

Mercury checks that any solver variables that are used in the above contexts are used in
such a way that negation as failure remains sound. In the case of negation and if-then-else
goals, if any non-local solver type variable or higher-order variable with inst any is used
in a negated context, the goal must be placed inside a promise_pure, promise_semipure,
or promise_impure scope. The first two promises assert that (among other things) no
solver variable becomes further bound in the negated context. The third promise makes the
weaker assertion that the goal satisfies the requirements of all impure goals (namely, that
it doesn’t interfere with the semantics of other pure goals).

In the case of pred and func expressions, Mercury allows three possibilities. The higher-
order value may be considered ground, which means that all non-local variables used in the
body of the expression (including those with other higher-order values) must themselves be
ground. Higher-order values that are ground can be safely called or applied in any context,
including negated contexts, since none of their (ground) non-local variables can become
further bound by doing so. Alternatively, the higher-order value may be considered to have
inst any, which allows non-local variables used in the body of the expression to have inst
any. Calling or applying these values may further bind non-local variables, so if this occurs
in a negated context then, as in the case of solver variables, a promise will be required
around the negation or if-then-else.

Pred and func expressions with inst any are written using any_pred and any_func in
place of pred and func, respectively.

The third possibility is that the higher-order value can be given an impure type (see
Section 17.8 [Higher-order impurity], page 150).

Chapter 19: Trace goals 156

19 Trace goals

Sometimes, programmers find themselves needing to perform some side-effects in the middle
of declarative code. One example is an operation that takes so long that users may think
the program has gone into an infinite loop: periodically printing a progress message can give
them reassurance. Another example is a program that is too long-running for its behaviour
to be analyzed via debuggers and too complex for analysis via profilers; a programmable
logging facility generating data for analysis by a specially-written program may be the best
option. However, inserting arbitrary side effects into declarative code is against the spirit of
Mercury. Trace goals exist to provide a mechanism to code these side effects in a disciplined
fashion.

The format of trace goals is trace Params Goal . Goal must be a valid goal; Params
must be a valid list of one or more trace parameters. The following example shows all four
of the available kinds of parameters: ‘compile_time’, ‘run_time’, ‘io’ and ‘state’. (In
practice, it is far more typical to have just one parameter, ‘io’.)

:- mutable(logging_level, int, 0, ground, []).

:- pred time_consuming_task(data::in, result::out) is det.

time_consuming_task(In, Out) :-

trace [

compile_time(flag("do_logging") or grade(debug)),

run_time(env("VERBOSE")),

io(!IO),

state(logging_level, !LoggingLevel)

] (

io.write_string("Time_consuming_task start\n", !IO),

(if !.LoggingLevel > 1 then

io.write_string("Input is ", !IO),

io.write(In, !IO),

io.nl(!IO)

else

true

)

),

...

% perform the actual task

The ‘compile_time’ parameter says under what circumstances the trace goal should be
included in the executable program. In the example, at least one of two conditions has to be
true: either this module has to be compiled with the option ‘--trace-flag=do_logging’,
or it has to be compiled in a debugging grade.

In general, the single argument of the ‘compile_time’ function symbol is a boolean
expression of primitive compile-time conditions. Valid boolean operators in these expres-
sions are ‘and’, ‘or’ and ‘not’. There are three kinds of primitive compile-time condi-
tions. The first has the form ‘flag(FlagName)’, where FlagName is an arbitrary name
picked by the programmer; this condition is true if the module is compiled with the

Chapter 19: Trace goals 157

option ‘--trace-flag=FlagName ’. The second has the form ‘tracelevel(shallow)’, or
‘tracelevel(deep)’; this condition is true (irrespective of grade) if the module is compiled
with at least the specified trace level. The third has the form ‘grade(GradeTest)’. The
supported ‘GradeTests’s and their meanings are as follows.

‘debug’ True if the module is compiled with execution tracing enabled.

‘ssdebug’ True if the module is compiled with source-to-source debugging enabled.

‘prof’ True if the module is compiled with non-deep profiling enabled.

‘profdeep’
True if the module is compiled with deep profiling enabled.

‘par’ True if the module is compiled with parallel execution enabled.

‘trail’ True if the module is compiled with trailing enabled.

‘llds’ True if the module is compiled with ‘--highlevel-code’ disabled.

‘mlds’ True if the module is compiled with ‘--highlevel-code’ enabled.

‘c’ True if the target language of the compilation is C.

‘csharp’ True if the target language of the compilation is C#.

‘java’ True if the target language of the compilation is Java.

The ‘run_time’ parameter says under what circumstances the trace goal, if included in
the executable program, should actually be executed. In this case, the environment variable
‘VERBOSE’ has be to set when the program starts execution. (It doesn’t matter what value
it is set to.)

In general, the single argument of the ‘run_time’ function symbol is a boolean expres-
sion of primitive run-time conditions. Valid boolean operators in these expressions are
‘and’, ‘or’ and ‘not’. There is just one primitive run-time condition. It has the form
‘env(EnvVarName)’, this condition is true if the environment variable EnvVarName exists
when the program starts execution.

The ‘compile_time’ and ‘run_time’ parameters may not appear in the parameter list
more than once; programmers who want more than one condition have to specify how (with
what boolean operators) their values should be combined. However, it is ok for them not
to appear in the parameter list at all. If there is no ‘compile_time’ parameter, the trace
goal is always compiled into the executable; if there is no ‘run_time’ parameter, the trace
goal is always executed (if it is compiled into the executable).

Since the trace goal may end up either not compiled into the executable or just not
executed, it cannot bind any variables that occur in the surrounding code. (If it were allowed
to bind such variables, then those variables would stay unbound if either the compile time
or the run time condition were false.) This greatly restricts what trace goals can do.

The usual reason for including a trace goal in a procedure body is to perform some
I/O, which requires access to the I/O state. The ‘io’ parameter supplies this access. Its
argument must be the name of a state variable prefixed by ‘!’; by convention, it is usually
‘!IO’. The language implementation supplies the initial unique value of the I/O state as
the value of ‘!.IO’ at the start of the trace goal; it requires the trace goal to give back the

Chapter 19: Trace goals 158

final unique value of the I/O state as the value of ‘!.IO’ current at the end of the trace
goal.

Note that trace goals that wish to do I/O must include this parameter in their parameter
list even if the surrounding code already has access to an I/O state. This is because
otherwise, doing any I/O inside the trace goal would destroy the value of the current I/O
state, changing the instantiation state of the variable holding it, and trace goals are not
allowed to do that.

The ‘io’ parameter may appear in the parameter list at most once, since it doesn’t make
sense to have two copies of the I/O state available to the trace goal.

Besides doing I/O, trace goals may read and possibly write the values of mutable vari-
ables. Each mutable the trace goal wants access to should be listed in its own ‘state’ pa-
rameter (which may therefore appear in the parameter list more than once). Each ‘state’
parameter has two arguments: the first gives the name of the mutable, while the second
must be the name of a state variable prefixed by ‘!’, e.g. ‘!LoggingLevel’. The lan-
guage implementation supplies the initial value of the mutable as the value of (in this case)
‘!.LoggingLevel’ at the start of the trace goal; at the end of the trace goal, it puts the
value of ‘!.LoggingLevel’ current then back into the mutable.

The intention here is that trace goals should be able to access mutables that give them
information about the parameters within which they should operate. The ability of trace
goals to actually update the values of mutables is intended to allow the implementation
of trace goals whose actions depend on the actions executed by previous trace goals. For
example, a trace goal could test whether the current input value is the same as the previous
input value, and if it is, then it can say so instead of printing the value out again. Another
possibility is a progress message which is printed not for every item processed, but for every
1000th item, reassuring users without overwhelming them with a deluge of output.

This kind of code is the only intended use of this ability. Any program in which the value
of a mutable set by a trace goal is inspected by code that is not itself within a trace goal
is explicitly violating the intended uses of trace goals. Only the difficulty of implementing
the required global program analysis prevents the language design from outlawing such
programs in the first place.

The compiler will not delete trace goals from the bodies of the procedures containing
them. However, trace goals inside a procedure don’t prevent calls to that procedure from
being optimized away, if such optimization is otherwise possible. (There is no point in
debugging or logging operations that don’t actually occur.) In their effect on program
optimizations, trace goals function as a kind of impure code, but one with an implicit
promise pure around the clause in which they occur.

Chapter 20: Pragmas 159

20 Pragmas

The pragma declarations described below are a standard part of the Mercury language,
as are the pragmas for controlling the foreign language interface (see Chapter 16 [For-
eign language interface], page 117) and impurity (see Chapter 17 [Impurity], page 146).
As an extension, implementations may also choose to support additional pragmas with
implementation-dependent semantics (see Chapter 21 [Implementation-dependent exten-
sions], page 164).

20.1 Inlining

Declarations of these forms

:- pragma inline(pred(Name/Arity)).

:- pragma inline(func(Name/Arity)).

are a hint to the compiler that all calls to the predicate or function with name Name and
arity Arity should be inlined.

The current Mercury implementation is smart enough to inline simple predicates even
without this hint.

Declarations of these forms

:- pragma no_inline(pred(Name/Arity)).

:- pragma no_inline(func(Name/Arity)).

tell the compiler not to inline the named predicate or function. This may be used simply for
performance concerns (inlining can cause unwanted code bloat in some cases) or to prevent
possibly dangerous inlining when using low-level C code.

20.2 Type specialization

The overhead of polymorphism can in some cases be significant, especially where poly-
morphic predicates make heavy use of class method calls or the builtin unification and
comparison routines. To avoid this, the programmer can suggest to the compiler that a
specialized version of a procedure should be created for a specific set of argument types.

20.2.1 Syntax and semantics of type specialization pragmas

A declaration of the form

:- pragma type_spec(pred(Name/Arity), Subst).

:- pragma type_spec(func(Name/Arity), Subst).

suggests to the compiler that it should create a specialized version of the predicate or
function with name Name and arity Arity with the type substitution given by Subst applied
to the argument types. The substitution is written as a conjunction of bindings of the form
‘TypeVar = Type ’, for example ‘K = int’ or ‘(K = int, V = list(int))’. (The conjunction
must have parentheses around it if it contains two or more bindings.)

For example, the declarations

:- pred map.lookup(map(K, V), K, V).

:- pragma type_spec(pred(map.lookup/3), K = int).

Chapter 20: Pragmas 160

give a hint to the compiler that a version of ‘map.lookup/3’ should be created for integer
keys.

Implementations are free to ignore ‘pragma type_spec’ declarations. Implementations
are also free to perform type specialization even in the absence of any ‘pragma type_spec’
declarations.

The pragma also has a form that suggests specialization of only one mode of the predicate
or function, instead of all of them:

:- pragma type_spec(Name(m1, ... mn), Subst).

:- pragma type_spec(Name(m1, ... mn) = mr, Subst).

where m1 etc are the modes of the arguments. If the ‘= mr ’ part is present, it gives the
mode of the function result; if it is absent, this indicates that Name is a predicate.

20.2.2 When to use type specialization

The set of types for which a predicate or function should be specialized is best determined
by profiling your application. Overuse of type specialization will result in code bloat.

Type specialization of predicates or functions which unify or compare polymorphic vari-
ables is most effective when the specialized types are builtin types such as int, float and
string, or enumeration types, since their unification and comparison procedures are simple
and can be inlined.

Predicates or functions which make use of type class method calls may also be candidates
for specialization. Again, this is most effective when the called type class methods are simple
enough to be inlined.

20.2.3 Implementation specific details

The Melbourne Mercury compiler performs user-requested type specializations when in-
voked with ‘--user-guided-type-specialization’, which is enabled at optimization level
‘-O2’ or higher. However, for the Java back-end, user-requested type specializations are ig-
nored.

20.3 Obsolescence

Declarations of the forms

:- pragma obsolete(pred(Name/Arity)).

:- pragma obsolete(func(Name/Arity)).

:- pragma obsolete(pred(Name/Arity),

[ReplName1/ReplArity1, ..., ReplNameN/ReplArityN]).

:- pragma obsolete(func(Name/Arity),

[ReplName1/ReplArity1, ..., ReplNameN/ReplArityN]).

declare that the predicate or function with name Name and arity Arity is “obsolete”: they
instruct the compiler to issue a warning whenever the named predicate or function is used.
The forms with a second argument tell the compiler to suggest the use of one of the listed
possible replacements.

Declarations of the forms

:- pragma obsolete_proc(PredName(ArgMode1, ..., ArgModeN)).

:- pragma obsolete_proc(PredName(ArgMode1, ..., ArgModeN),

Chapter 20: Pragmas 161

[ReplName1/ReplArity1, ..., ReplNameN/ReplArityN]).

:- pragma obsolete_proc(FuncName(ArgMode1, ..., ArgModeN) = RetMode).

:- pragma obsolete_proc(FuncName(ArgMode1, ..., ArgModeN) = RetMode,

[ReplName1/ReplArity1, ..., ReplNameN/ReplArityN]).

similarly declare that the predicate named PredName with arity N, or the function named
FuncName with arity N, is obsolete when called in the specified mode. These forms also
allow the specification of an optional list of possible replacements.

These declarations are intended for use by library developers, to allow gradual (rather
than abrupt) evolution of library interfaces. If a library developer changes the interface of a
library predicate or procedure, they should leave its old version in the library, but mark it as
obsolete using one of these declarations, and, if possible, use the suggested replacements to
steer users to their replacements (either partial or total) in the new interface. The users of
the library will then get a warning if they use obsolete features, and can consult the library
documentation to determine how to fix their code. Eventually, when the library developer
believes that users have had sufficient warning, they can remove the old version entirely.

20.4 No determinism warnings

Declarations of the forms

:- pragma no_determinism_warning(pred(Name/Arity)).

:- pragma no_determinism_warning(func(Name/Arity)).

tell the compiler not to generate any warnings about the determinism declarations of pro-
cedures of the predicate or function with name Name and arity Arity not being as tight as
they could be.

‘pragma no_determinism_warning’ declarations are intended for use in situations in
which the code of a predicate has one determinism, but the declared determinism of the
procedure must be looser due to some outside requirement. One such situation is when a
set of procedures are all possible values of the same higher-order variable, which requires
them to have the same argument types, modes, and determinisms. If (say) most of the
procedures are det but some are erroneous (that is, they always throws an exception), the
procedures that are declared det but whose bodies have determinism erroneous will get
a warning saying their determinism declaration could be tighter, unless the programmer
specifies this pragma for them.

20.5 No dead predicate warnings

Declarations of the forms

:- pragma consider_used(pred(Name/Arity)).

:- pragma consider_used(func(Name/Arity)).

tells the compiler to consider the predicate or function with name Name and arity Arity to
be used, and not generate any dead procedure/predicate/function warnings either for the
named predicate or function, or for the other predicates and functions that it calls, either
directly or indirectly.

‘pragma consider_used’ declarations are intended for use in situations in which the
code that was intended to call such a predicate or function is not yet written.

Chapter 20: Pragmas 162

20.6 Source file name

The ‘source_file’ pragma and ‘#line ’ directives provide support for preprocessors and
other tools that generate Mercury code. The tool can insert these directives into the gener-
ated Mercury code to allow the Mercury compiler to report diagnostics (error and warning
messages) at the original source code location, rather than at the location in the automat-
ically generated Mercury code.

A ‘source_file’ pragma is a declaration of the form

:- pragma source_file(Name).

where Name is a string that specifies the name of the source file.

For example, if a preprocessor generated a file ‘foo.m’ based on a input file ‘foo.m.in’,
and it copied lines 20, 30, and 31 from ‘foo.m.in’, the following directives would ensure
that any error or warnings for those lines copied from ‘foo.m’ were reported at their original
source locations in ‘foo.m.in’.

:- module foo.

:- pragma source_file("foo.m.in").

#20

% this line comes from line 20 of foo.m

#30

% this line comes from line 30 of foo.m

% this line comes from line 31 of foo.m

:- pragma source_file("foo.m").

#10

% this automatically generated line is line 10 of foo.m

Note that if a generated file contains some text which is copied from a source file, and
some which is automatically generated, it is a good idea to use ‘pragma source_file’
and ‘#line ’ directives to reset the source file name and line number to point back to the
generated file for the automatically generated text, as in the above example.

20.7 Old pragma syntax

Many of the pragmas above specify the identity of a predicate or a function as the entity to
which the pragma applies. Their documentation shows these pragmas to have this syntax:

:- pragma pragma_name(pred(Name/Arity)).

:- pragma pragma_name(func(Name/Arity)).

New code should use this syntax. However, old versions of the Mercury compiler sup-
ported only a simpler version of this syntax, like this:

:- pragma pragma_name(Name/Arity).

Since this syntax does not specify whether the pragma is supposed to apply to a predicate
or to a function, it is ambiguous in the event that the program contains both a predicate
and a function with the given name and arity.

For backwards compatibility, the Mercury compiler still supports this syntax, but it will
now generate a warning when the program contains both a predicate and a function with
the given name and arity. It can also be asked to generate a warning for all pragmas that
should specify whether they apply to a predicate or to a function but do not do so.

Chapter 20: Pragmas 163

A later version of Mercury will deprecate this syntax, and a still later version will stop
supporting it.

Chapter 21: Implementation-dependent extensions 164

21 Implementation-dependent extensions

The Melbourne Mercury implementation supports the following extensions to the Mercury
language:

21.1 Fact tables

Large tables of facts can be compiled using a different algorithm that is more efficient and
can produce more efficient code.

Declarations of the forms

:- pragma fact_table(pred(Name/Arity), FileName).

:- pragma fact_table(func(Name/Arity), FileName).

tell the compiler that the predicate or function with name Name and arity Arity is defined
by a set of facts in an external file FileName. Defining large tables of facts in this way allows
the compiler to use a more efficient algorithm for compiling them. This algorithm uses less
memory than would normally be required to compile the facts, so much larger tables are
possible.

Each mode is indexed on all its input arguments so the compiler can produce very
efficient code using this technique.

In the current implementation, the table of facts is compiled into a separate C file named
‘FileName.c’. The compiler will automatically generate the correct dependencies for this
file when the command ‘mmake main_module.depend’ is invoked. This ensures that the C
file will be compiled to ‘FileName.o’ and then linked with the other object files when ‘mmake
main_module ’ is invoked.

The main limitation of the ‘fact_table’ pragma is that in the current implementation,
predicates or functions defined as fact tables can only have arguments of types string, int
or float.

Another limitation is that the ‘--high-level-code’ back-end does not support ‘pragma
fact_table’ for procedures with determinism nondet or multi.

21.2 Tabled evaluation

(Note: “Tabled evaluation” has no relation to the “fact tables” described above.)

Ordinarily, the results of each procedure call are not recorded; if the same procedure is
called with the same arguments, then the answer(s) must be recomputed again. For some
procedures, this recomputation can be very wasteful.

With tabled evaluation, the implementation keeps a table containing the previously
computed results of the specified procedure; this table is sometimes called the memo table
(since it “remembers” previous answers). At each procedure call, the implementation will
search the memo table to check whether the answer(s) have already been computed, and if
so, the answers will be returned directly from the memo table rather than being recomputed.
This can result in much faster execution, at the cost of additional space to record answers
in the table.

The implementation can also check at runtime for the situation where a procedure calls
itself recursively with the same arguments, which would normally result in a infinite loop;

Chapter 21: Implementation-dependent extensions 165

if this situation is encountered, it can (at the programmer’s option) either throw an excep-
tion, or avoid the infinite loop by computing solutions using a “minimal model” semantics.
(Specifically, the minimal model computed by our implementation is the perfect model.)

When targeting the generation of C code, the current Mercury implementation supports
three different pragmas for tabling, to cover these three cases: ‘loop_check’, ‘memo’, and
‘minimal_model’. (None of these are supported when targeting the generation of C# or
Java code.)

• The ‘loop_check’ pragma asks only for loop checking. With this pragma, the memo
table will map each distinct set of input arguments only to a single boolean saying
whether a call with those arguments is currently active or not; the pragma’s only effect
is to cause the predicate to throw an exception if this boolean says that the current call
has the same arguments as one of its ancestors, which indicates an infinite recursive
loop.

Note that loop checking for nondet and multi predicates assumes that calls to these
predicates generate all their solutions and then fail. If a caller asks them only for some
solutions and then cuts away all later solutions (e.g. via a quantification that only asks
whether a solution satisfying a particular test exists), then the cut-away call never gets
a chance to record the fact that it is not longer active. The next call to that predicate
with the same arguments will therefore think that the previous call is still active, and
will consider this call to be an infinite loop.

• The ‘memo’ pragma asks for both loop checking and memoization. With this pragma,
the memo table will map each distinct set of input arguments either to the set of
results computed previously for those arguments, or to an indication that the call is
still active and thus those results are still being computed. This predicate will thus look
for infinite recursive loops (and throw an exception if and when it finds one) but it will
also record all its solutions in the memo table, and will avoid recomputing solutions
that are already available in the memo table.

• The ‘minimal_model’ pragma asks for the computation of a “minimal model” seman-
tics. These differ from the ‘memo’ pragma in that the detection of what appears to be
an infinite recursive loop is not fatal. The implementation will consider the apparently
infinitely recursive calls to fail if the call concerned has no way of computing any solu-
tions it has not already computed and recorded, and if it does have such a way, then
it switches the execution to explore those ways before coming back to the apparently
infinitely recursive call.

Minimal model evaluation is applicable only to procedures that can succeed more than
once, and only in grades that explicitly support it.

The syntax for each of these declarations is

:- pragma memo(pred(Name/Arity)).

:- pragma memo(pred(Name/Arity), [list of tabling attributes]).

:- pragma loop_check(pred(Name/Arity)).

:- pragma loop_check(pred(Name/Arity), [list of tabling attributes]).

:- pragma minimal_model(pred(Name/Arity)).

:- pragma minimal_model(pred(Name/Arity), [list of tabling attributes]).

and the corresponding versions in which ‘pred’ is replaced with ‘func’. The
‘pred(Name/Arity)’ or ‘func(Name/Arity)’ part specifies the predicate or function to

Chapter 21: Implementation-dependent extensions 166

which the declaration applies. At most one of these declarations may be specified for any
given predicate or function.

Pragmas using the above syntax specify a declaration that applies to all the modes of
a predicate or function. Programmers can request the application of tabling to only one
particular mode of a predicate or function, via declarations such as these:

:- pragma memo(Name(in, in, out)).

:- pragma memo(Name(in, in, out), [list of tabling attributes]).

:- pragma loop_check(Name(in, out)).

:- pragma loop_check(Name(in, out), [list of tabling attributes]).

:- pragma minimal_model(Name(in, in, out, out)).

:- pragma minimal_model(Name(in, in, out, out), [list of tabling attributes]).

All the above example pragmas are for predicates. For functions, the first argument of
the pragma would include the mode of the function result as well, like this:

:- pragma memo(Name(in, in) = out, [list of tabling attributes]).

Because all variants of tabling record the values of input arguments, and all except
‘loop_check’ also record the values of output arguments, you cannot apply any of these
pragmas to procedures whose arguments’ modes include any unique component.

Tabled evaluation of a predicate or function that has an argument whose type is a
foreign type will result in a run-time error, unless the foreign type is one for which the
‘can_pass_as_mercury_type’ and ‘stable’ assertions have been made (see Section 16.4
[Using foreign types from Mercury], page 128).

The optional list of attributes allows programmers to control some aspects of the man-
agement of the memo table(s) of the procedure(s) affected by the pragma.

The ‘allow_reset’ attribute asks the compiler to define a predicate that, when called,
resets the memo table. The name of this predicate will be “table reset for”, followed by the
name of the tabled predicate, followed by its arity, and (if the predicate has more than one
mode) by the mode number (the first declared mode is mode 0, the second is mode 1, and
so on). These three or four components are separated by underscores. The reset predicate
takes a di/uo pair of I/O states as arguments. The presence of these I/O state arguments
in the reset predicate, and the fact that tabled predicates cannot have unique arguments
together imply that a memo table cannot be reset while a call using that memo table is
active.

The ‘statistics’ attribute asks the compiler to define a predicate that, when
called, returns statistics about the memo table. The name of this predicate will be
“table statistics for”, followed by the name of the tabled predicate, followed by its arity,
and (if the predicate has more than one mode) by the mode number (the first declared
mode is mode 0, the second is mode 1, and so on). These three or four components are
separated by underscores. The statistics predicate takes three arguments. The second and
third are a di/uo pair of I/O states, while the first is an output argument that contains
information about accesses to and modifications of the procedure’s memo table, both since
the creation of the table, and since the last call to this predicate. The type of this argument
is defined in the file table builtin.m in the Mercury standard library. That module also
contains a predicate for printing out this information in a programmer-friendly format.

As mentioned above, the Mercury compiler implements tabling only when targeting the
generation of C code. In other grades, the compiler normally generates a warning for each

Chapter 21: Implementation-dependent extensions 167

tabling pragma that it is forced to ignore. The ‘disable_warning_if_ignored’ attribute
tells the compiler not to generate such a warning for the pragma it is attached to. Since
the ‘loopcheck’ and ‘minimal_model’ pragmas affect the semantics of the program, and
such changes should not be made silently, this attribute may not be specified for them. But
this attribute may be specified for ‘memo’ pragmas, since these affect only the program’s
performance, not its semantics.

The remaining two attributes, ‘fast_loose’ and ‘specified’, control how arguments
are looked up in the memo table. The default implementation looks up the value of each
input argument, and thus requires time proportional to the number of function symbols in
the input arguments. This is the only implementation allowed for minimal model tabling,
but for predicates tabled with the ‘loop_check’ and ‘memo’ pragmas, programmers can also
choose some other tabling methods.

The ‘fast_loose’ attribute asks the compiler to generate code that looks up only the ad-
dress of each input argument in the memo table, which means that the time required is linear
only in the number of input arguments, not their size. The tradeoff is that ‘fast_loose’
does not recognize calls as duplicates if they involve input arguments that are logically
equal but are stored at different locations in memory. The following declaration calls for
this variant of tabling.

:- pragma memo(Name(in, in, in, out),

[allow_reset, statistics, fast_loose]).

The ‘specified’ attribute allows programmers to choose individually, for each input
argument, whether that argument should be looked up in the memo table by value or by
address, or whether it should be looked up at all:

:- pragma memo(Name(in, in, in, out), [allow_reset, statistics,

specified([value, addr, promise_implied, output])]).

The ‘specified’ attribute should have an argument which is a list, and this list should
contain one element for each argument of the predicate or function concerned (if a func-
tion, the last element is for the return value). For output arguments, the list element
should be ‘output’. For input arguments, the list element may be ‘value’, ‘addr’ or
‘promise_implied’. The first calls for tabling the argument by value, the second calls
for tabling the argument by address, and the third calls for not tabling the argument at
all. This last course of action promises that any two calls that agree on the values of the
value-tabled input arguments and on the addresses of the address-tabled input arguments
will behave the same regardless of the values of the untabled input arguments. In most
cases, this will mean that the values of the untabled arguments are implied by the values
of the value-tabled arguments and the addresses of the address-tabled arguments, though
the promise can also be fulfilled if the table predicate or function does not actually use the
untabled argument for computing any of its output. (It is ok for it to use the untabled
argument to decide what exception to throw.)

If the tabled predicate or function has only one mode, then a declaration like this can
also be specified without giving the argument modes:

:- pragma memo(pred(Name/Arity), [allow_reset, statistics,

specified([value, addr, promise_implied, output])]).

Note that a ‘pragma minimal_model’ declaration changes the declarative semantics of
the specified predicate or function: instead of using the completion of the clauses as the

Chapter 21: Implementation-dependent extensions 168

basis for the semantics, as is normally the case in Mercury, the declarative semantics that
is used is a “minimal model” semantics, specifically, the perfect model semantics. Anything
which is true or false in the completion semantics is also true or false (respectively) in
the perfect model semantics, but there are goals for which the perfect model specifies that
the result is true or false, whereas the completion semantics leaves the result unspecified.
For these goals, the usual Mercury semantics requires the implementation to either loop or
report an error message, but the perfect model semantics requires a particular answer to
be returned. In particular, the perfect model semantics says that any call that is not true
in all models is false.

Programmers should therefore use a ‘pragma minimal_model’ declaration only in cases
where their intended interpretation for a procedure coincides with the perfect model for
that procedure. Fortunately, however, this is usually what programmers intend.

For more information on tabling, see K. Sagonas’s PhD thesis The SLG-WAM: A Search-
Efficient Engine for Well-Founded Evaluation of Normal Logic Programs. See [[4]], page 177.
The operational semantics of procedures with a ‘pragma minimal_model’ declaration cor-
responds to what Sagonas calls “SLGd resolution”.

In the general case, the execution mechanism required by minimal model tabling is quite
complicated, requiring the ability to delay goals and then wake them up again. The Mercury
implementation uses a technique based on copying relevant parts of the stack to the heap
when delaying goals. It is described in Tabling in Mercury: design and implementation by
Z. Somogyi and K. Sagonas, Proceedings of the Eight International Symposium on Practical
Aspects of Declarative Languages.
☛ ✟

Please note: the current implementation of tabling does not support all the possible
compilation grades (see the “Compilation model options” section of the Mercury User’s
Guide) allowed by the Mercury implementation. In particular, minimal model tabling is
incompatible with high level code and the use of trailing.
✡ ✠

21.3 Termination analysis

The compiler includes a termination analyser which can be used to prove termination of
predicates and functions. Details of the analysis is available in “Termination Analysis for
Mercury” by Chris Speirs, Zoltan Somogyi and Harald Sondergaard. See [[1]], page 177.

The analysis is based on an algorithm proposed by Gerhard Groger and Lutz Plumer
in their paper “Handling of mutual recursion in automatic termination proofs for logic
programs.” See [[2]], page 177.

For an introduction to termination analysis for logic programs, please refer to “Termi-
nation Analysis for Logic Programs” by Chris Speirs. See [[3]], page 177.

Information about the termination properties of a predicate or function can be given to
the compiler. Pragmas are also available to require the compiler to prove termination of a
given predicate or function, or to give an error message if it cannot do so.

The analyser is enabled by the option ‘--enable-termination’, which can be abbrevi-
ated to ‘--enable-term’. When termination analysis is enabled, any predicates or functions
with a ‘check_termination’ pragma defined on them will have their termination checked,

Chapter 21: Implementation-dependent extensions 169

and if termination cannot be proved, the compiler will emit an error message detailing the
reason that termination could not be proved.

The option ‘--check-termination’, which may be abbreviated to ‘--check-term’ or
‘--chk-term’, forces the compiler to check the termination of all predicates in the module.
It is common for the compiler to be unable to prove termination of some predicates and
functions because they call other predicates which could not be proved to terminate or
because they use language features (such as higher-order calls) which cannot be usefully
analysed. In this case, the compiler only emits a warning for these predicates and functions
if the ‘--verbose-check-termination’ option is enabled. For every predicate or function
that the compiler cannot prove the termination of, a warning message is emitted, but compi-
lation continues. The ‘--check-termination’ option implies the ‘--enable-termination’
option.

The accuracy of the termination analysis is substantially degraded if intermodule op-
timization is not enabled. Unless intermodule optimization is enabled, the compiler must
assume that any imported predicate may not terminate.

By default, the compiler assumes that a procedure defined using the foreign language
interface will terminate for all input if it does not call Mercury. If it does call Mercury then
by default the compiler will assume that it may not terminate.

The foreign code attributes ‘terminates’/‘does_not_terminate’ may be used to force
the compiler to treat a foreign proc as terminating/non-terminating irrespective of whether
it calls Mercury. As a matter of style, it is preferable to use foreign code attributes for
foreign procs rather than the termination pragmas described below.

The following declarations can be used to inform the compiler of the termination prop-
erties of a predicate or function.

:- pragma terminates(pred(Name/Arity)).

:- pragma terminates(func(Name/Arity)).

This declaration may be used to inform the compiler that this predicate or function
is guaranteed to terminate for any input. This is useful when the compiler cannot prove
termination of some predicates or functions which are in turn preventing the compiler from
proving termination of other predicates or functions. This declaration affects not only the
predicate specified but also any other predicates that are mutually recursive with it.

:- pragma does_not_terminate(pred(Name/Arity)).

:- pragma does_not_terminate(func(Name/Arity)).

This declaration may be used to inform the compiler that this predicate or function may
not terminate. This declaration affects not only the predicate or function specified but also
any other predicates and/or functions that are mutually recursive with it.

:- pragma check_termination(pred(Name/Arity)).

:- pragma check_termination(func(Name/Arity)).

This pragma tells the compiler that it should try to prove the termination of this predi-
cate or function, and if it fails, then it should quit with an error message.

21.4 Feature sets

The Melbourne Mercury implementation supports a number of optional compilation model
features, such as Section 21.5 [Trailing], page 171 or Section 21.2 [Tabled evaluation],

Chapter 21: Implementation-dependent extensions 170

page 164. Feature sets allow the programmer to assert that a module requires the presence
of one or more optional features in the compilation model. These assertions can be made
using a ‘pragma require_feature_set’ declaration.

The ‘require_feature_set’ pragma declaration has the following form:

:- pragma require_feature_set(Features).

where Features is a (possibly empty) list of features.

The supported features are:

‘concurrency’
This specifies that the compilation model must support concurrent execution
of multiple threads.

‘single_prec_float’
This specifies that the compilation model must use single precision floats. This
feature cannot be specified together with the ‘double_prec_float’ feature.

‘double_prec_float’,
This feature specifies tha the compilation model must use double precision
floats. This feature cannot be specified together with the ‘single_prec_float’
feature.

‘memo’ This feature specifies that the compilation model must support memoisation
(see Section 21.2 [Tabled evaluation], page 164).

‘parallel_conj’
This feature specifies that the compilation model must support parallel ex-
ecution of conjunctions. This feature cannot be specified together with the
‘trailing’ feature.

‘trailing’
This feature specifies that the compilation model must support trailing, see
Section 21.5 [Trailing], page 171. This feature cannot be specified together
with the ‘parallel_conj’ feature.

‘strict_sequential’
This feature specifies that a semantics that is equivalent to the strict sequential
operational semantics must be used.

‘conservative_gc’
This feature specifies that a module requires conservative garbage collection.
This feature is only checked when using the C backends; it is ignored by the
non-C backends.

When a module containing a ‘pragma require_feature_set’ declaration is compiled,
the implementation checks to see that the specified features are supported by the compila-
tion model. It emits an error if they are not.

A ‘pragma require_feature_set’ may only occur in the implementation section of a
module.

A ‘pragma require_feature_set’ affects only the module in which it occurs; in partic-
ular it does not affect any submodules.

Chapter 21: Implementation-dependent extensions 171

If a module contains multiple ‘pragma require_feature_set’ declarations, then the
implementation should emit an error if any of them specifies a feature that is not supported
by the compilation model.

21.5 Trailing

In certain compilation grades (see the “Compilation model options” section of the Mercury
User’s Guide), the Melbourne Mercury implementation supports trailing. Trailing is a
means of having side-effects, such as destructive updates to data structures, undone on
backtracking. The basic idea is that during forward execution, whenever you perform a
destructive modification to a data structure that may still be live on backtracking, you
should record whatever information is necessary to restore it on a stack-like data structure
called the “trail”. Then, if a computation fails, and execution backtracks to before those
updates were performed, the Mercury runtime engine will traverse the trail back to the
most recent choice point, undoing all those updates.

The interface used is a set of C functions (which are actually implemented as macros)
and types. Typically these will be called from C code within ‘pragma foreign_proc’ or
‘pragma foreign_code’ declarations in Mercury code.

For an example of the use of this interface, see the module ‘extras/trailed_update/tr_array.m’
in the Mercury extras distribution.

21.5.1 Choice points

A “choice point” is a point in the computation to which execution might backtrack when
a goal fails or throws an exception. The “current” choice point is the one that was most
recently encountered; that is also the one to which execution will branch if the current
computation fails.

When you trail an update, the Mercury engine will ensure that if execution ever back-
tracks to the choice point that was current at the time of trailing, then the update will be
undone.

If the Mercury compiler determines that it will never need to backtrack to a particular
choice point, then it will “prune” away that choice point. If a choice point is pruned, the
trail entries for those updates will not necessarily be discarded, because in general they may
still be necessary in case we backtrack to a prior choice point.

21.5.2 Value trailing

The simplest form of trailing is value trailing. This allows you to trail updates to memory
and have the Mercury runtime engine automatically undo them on backtracking.

• MR_trail_value()

Prototype:

void MR_trail_value(MR_Word *address, MR_Word value);

Ensures that if future execution backtracks to the current choice point, then
value will be placed in address.

• MR_trail_current_value()

Prototype:

Chapter 21: Implementation-dependent extensions 172

void MR_trail_current_value(MR_Word *address);

Ensures that if future execution backtracks to the current choice point, the
value currently in address will be restored.

‘MR_trail_current_value(address)’ is equivalent to ‘MR_trail_value(address,
*address)’.

Note that address must be word aligned for both MR_trail_current_value() and MR_

trail_value(). (The address of Mercury data structures that have been passed to C via
the foreign language interface are guaranteed to be appropriately aligned.)

21.5.3 Function trailing

For more complicated uses of trailing, you can store the address of a C function on the
trail and have the Mercury runtime call your function back whenever future execution
backtracks to the current choice point or earlier, or whenever that choice point is pruned,
because execution commits to never backtracking over that point, or whenever that choice
point is garbage collected.

Note the garbage collector in the current Mercury implementation does not garbage-
collect the trail; this case is mentioned only so that we can cater for possible future exten-
sions.

• MR_trail_function()

Prototype:

typedef enum {

MR_undo,

MR_exception,

MR_retry,

MR_commit,

MR_solve,

MR_gc

} MR_untrail_reason;

void MR_trail_function(

void (*untrail_func)(void *, MR_untrail_reason),

void *value

);

A call to ‘MR_trail_function(untrail_func, value)’ adds an entry to the
function trail. The Mercury implementation ensures that if future execution
ever backtracks to the current choicepoint, or backtracks past the current choi-
cepoint to some earlier choicepoint, then (*untrail_func)(value, reason)

will be called, where reason will be ‘MR_undo’ if the backtracking was due to
a goal failing, ‘MR_exception’ if the backtracking was due to a goal throw-
ing an exception, or ‘MR_retry’ if the backtracking was due to the use of the
“retry” command in ‘mdb’, the Mercury debugger, or any similar user request
in a debugger. The Mercury implementation also ensures that if the current
choice point is pruned because execution commits to never backtracking to
it, then (*untrail_func)(value, MR_commit) will be called. It also ensures

Chapter 21: Implementation-dependent extensions 173

that if execution requires that the current goal be solvable, then (*untrail_

func)(value, MR_solve) will be called. This happens in calls to solutions/2,
for example. (MR_commit is used for “hard” commits, i.e. when we commit to a
solution and prune away the alternative solutions; MR_solve is used for “soft”
commits, i.e. when we must commit to a solution but do not prune away all the
alternatives.)

MR gc is currently not used — it is reserved for future use.

Typically if the untrail func is called with reason being ‘MR_undo’, ‘MR_exception’, or
‘MR_retry’, then it should undo the effects of the update(s) specified by value, and then free
any resources associated with that trail entry. If it is called with reason being ‘MR_commit’
or ‘MR_solve’, then it should not undo the update(s); instead, it may check for floundering
(see the next section). In the ‘MR_commit’ case it may, in some cases, be possible to also free
resources associated with the trail entry. If it is called with anything else (such as ‘MR_gc’),
then it should probably abort execution with an error message.

Note that the address of the C function passed as the first argument of MR_trail_

function() must be word aligned.

21.5.4 Delayed goals and floundering

Another use for the function trail is check for floundering in the presence of delayed goals.

Often, when implementing certain kinds of constraint solvers, it may not be possible to
actually solve all of the constraints at the time they are added. Instead, it may be necessary
to simply delay their execution until a later time, in the hope the constraints may become
solvable when more information is available. If you do implement a constraint solver with
these properties, then at certain points in the computation — for example, after executing
a negated goal — it is important for the system to check that there are no outstanding
delayed goals which might cause failure, before execution commits to this execution path.
If there are any such delayed goals, the computation is said to “flounder”. If the check for
floundering was omitted, then it could lead to unsound behaviour, such as a negation failing
even though logically speaking it ought to have succeeded.

The check for floundering can be implemented using the function trail, by simply calling
‘MR_trail_function()’ to add a function trail entry whenever you create a delayed goal,
and putting the appropriate check for floundering in the ‘MR_commit’ and ‘MR_solve’ cases
of your function. The Mercury extras distribution includes an example of this: see the
‘ML_var_untrail_func()’ function in the file ‘extras/trailed_update/var.m’.) If your
function does detect floundering, then it should print an error message and then abort
execution.

21.5.5 Avoiding redundant trailing

If a mutable data structure is updated multiple times, and each update is recorded on the
trail using the functions described above, then some of this trailing may be redundant. It
is generally not necessary to record enough information to recover the original state of the
data structure for every update on the trail; instead, it is enough to record the original
state of each updated data structure just once for each choice point occurring after the data
structure is allocated, rather than once for each update.

The functions described below provide a means to avoid redundant trailing.

Chapter 21: Implementation-dependent extensions 174

• MR_ChoicepointId

Declaration:

typedef ... MR_ChoicepointId;

The type MR_ChoicepointId is an abstract type used to hold the identity of a
choice point. Values of this type can be compared using C’s ‘==’ operator or
using ‘MR_choicepoint_newer()’.

• MR_current_choicepoint_id()

Prototype:

MR_ChoicepointId MR_current_choicepoint_id(void);

MR_current_choicepoint_id() returns a value indicating the identity of the
most recent choice point; that is, the point to which execution would backtrack if
the current computation failed. The value remains meaningful if the choicepoint
is pruned away by a commit, but is not meaningful after backtracking past the
point where the choicepoint was created (since choicepoint ids may be reused
after backtracking).

• MR_null_choicepoint_id()

Prototype:

MR_ChoicepointId MR_null_choicepoint_id(void);

MR_null_choicepoint_id() returns a “null” value that is distinct from any
value ever returned by MR_current_choicepoint_id. (Note that MR_null_

choicepoint_id() is a macro that is guaranteed to be suitable for use as a
static initializer, so that it can for example be used to provide the initial value
of a C global variable.)

• MR_choicepoint_newer()

Prototype:

bool MR_choicepoint_newer(MR_ChoicepointId, MR_ChoicepointId);

MR_choicepoint_newer(x, y) true iff the choicepoint indicated by x is newer
than (i.e. was created more recently than) the choicepoint indicated by y. The
null ChoicepointId is considered older than any non-null ChoicepointId. If either
of the choice points have been backtracked over, the behaviour is undefined.

The way these functions are generally used is as follows. When you create a mutable data
structure, you should call MR_current_choicepoint_id() and save the value it returns
as a ‘prev_choicepoint’ field in your data structure. When you are about to modify
your mutable data structure, you can then call MR_current_choicepoint_id() again and
compare the result from that call with the value saved in the ‘prev_choicepoint’ field in
the data structure using MR_choicepoint_newer(). If the current choicepoint is newer,
then you must trail the update, and update the ‘prev_choicepoint’ field with the new
value; furthermore, you must also take care that on backtracking the previous value of the
‘prev_choicepoint’ field in your data structure is restored to its previous value, by trailing
that update too. But if MR_current_choice_id() is not newer than the prev_choicepoint
field, then you can safely perform the update to your data structure without trailing it.

Chapter 21: Implementation-dependent extensions 175

If your mutable data structure is a C global variable, then you can use MR_null_

choicepoint_id() for the initial value of the ‘prev_choicepoint’ field. If on the other
hand your mutable data structure is created by a predicate or function that uses tabled
evaluation (see Section 21.2 [Tabled evaluation], page 164), then you should use MR_null_

choicepoint_id() for the initial value of the field. Doing so will ensure that the data
will be reset to its initial value if execution backtracks to a point before the mutable data
structure was created, which is important because this copy of the mutable data structure
will be tabled and will therefore be produced again if later execution attempts to create
another instance of it.

For an example of avoiding redundant trailing, see the sample module below.

Note that there is a cost to this — you have to include an extra field in your data
structure for each part of the data structure which you might update, you need to perform
a test for each update to decide whether or not to trail it, and if you do need to trail the
update, then you have an extra field that you need to trail. Whether or not the benefits
from avoiding redundant trailing outweigh these costs will depend on your application.

:- module trailing_example.

:- interface.

:- type int_ref.

% Create a new int_ref with the specified value.

%

:- pred new_int_ref(int_ref::uo, int::in) is det.

% update_int_ref(Ref0, Ref, OldVal, NewVal).

% Ref0 has value OldVal and Ref has value NewVal.

%

:- pred update_int_ref(int_ref::mdi, int_ref::muo, int::out, int::in)

is det.

:- implementation.

:- pragma foreign_decl("C", "

typedef struct {

MR_ChoicepointId prev_choicepoint;

MR_Integer data;

} C_IntRef;

").

:- pragma foreign_type("C", int_ref, "C_IntRef *").

:- pragma foreign_proc("C",

new_int_ref(Ref::uo, Value::in),

[will_not_call_mercury, promise_pure],

Chapter 21: Implementation-dependent extensions 176

"

C_Intref *x = malloc(sizeof(C_IntRef));

x->prev_choicepoint = MR_current_choicepoint_id();

x->data = Value;

Ref = x;

").

:- pragma foreign_proc("C",

update_int_ref(Ref0::mdi, Ref::muo, OldValue::out, NewValue::in),

[will_not_call_mercury, promise_pure],

"

C_IntRef *x = Ref0;

OldValue = x->data;

/* Check whether we need to trail this update. */

if (MR_choicepoint_newer(MR_current_choicepoint_id(),

x->prev_choicepoint))

{

/*

** Trail both x->data and x->prev_choicepoint,

** since we’re about to update them both.

*/

assert(sizeof(x->data) == sizeof(MR_Word));

assert(sizeof(x->prev_choicepoint) == sizeof(MR_Word));

MR_trail_current_value((MR_Word *)&x->data);

MR_trail_current_value((MR_Word *)&x->prev_choicepoint);

/*

** Update x->prev_choicepoint to indicate that

** x->data’s previous value has been trailed

** at this choice point.

*/

x->prev_choicepoint = MR_current_choicepoint_id();

}

x->data = NewValue;

Ref = Ref0;

").

Chapter 22: Bibliography 177

22 Bibliography

[1]

Chris Speirs, Zoltan Somogyi and Harald Sondergaard, Termination Analysis for Mercury.
In P. Van Hentenryck, editor, Static Analysis: Proceedings of the 4th International Sympo-
sium, Lecture Notes in Computer Science. Springer, 1997. A longer version is available for
download from http://www.mercurylang.org/documentation/papers/mu_97_09.ps.gz.

[2]

Gerhard Groger and Lutz Plumer, Handling of mutual recursion in automatic termination
proofs for logic programs. In K. Apt, editor, The Proceedings of the Joint International
Conference and Symposium on Logic Programming, pages 336–350. MIT Press, 1992.

[3]

Chris Speirs, Termination Analysis for Logic Programs, Technical Report 97/23, Depart-
ment of Computer Science, The University of Melbourne, Melbourne, Australia, 1997.
Available from http://www.mercurylang.org/documentation/papers/mu_97_23.ps.gz.

[4]

K. Sagonas, The SLG-WAM: A Search-Efficient Engine for Well-Founded Evaluation
of Normal Logic Programs, PhD thesis, SUNY at Stony Brook, 1996. Available from
http://user.it.uu.se/~kostis/Thesis/thesis.ps.gz.

[5]

B. Demoen and K. Sagonas, CAT: the Copying Approach to Tabling, In C. Palamidessi, H.
Glaser and K. Meinke, editors, Principles of Declarative Programming, 10th International
Symposium, PLILP’98, Lecture Notes in Computer Science, Springer, 1998. Available form
http://user.it.uu.se/~kostis/Papers/cat.ps.gz.

