[m-rev.] diff: set_tree234 speedup
Zoltan Somogyi
zs at csse.unimelb.edu.au
Thu Aug 25 21:07:59 AEST 2011
library/set_tree234.m:
Our algorithms for performing union and intersection are linear
in the size of the first argument, and logarithmic in the size
of the second. Switch the arguments of the symmetric operations
if their heights indicate that the first argument is significantly
larger than the second.
This diff allows set_tree234.m to work in not totally outrageous times
when it is used to implement set_of_var.m. On Michael Day's nasty.m,
this diff reduces the runtime of a such compiler by more than 94%,
from more than 1000 seconds, to less than 60s. Of course, using
the bitset modules, which is what set_of_var.m uses by default,
is even faster.
Zoltan.
Index: set_tree234.m
===================================================================
RCS file: /home/mercury/mercury1/repository/mercury/library/set_tree234.m,v
retrieving revision 1.19
diff -u -b -r1.19 set_tree234.m
--- set_tree234.m 23 Aug 2011 03:50:57 -0000 1.19
+++ set_tree234.m 25 Aug 2011 09:02:18 -0000
@@ -1874,25 +1874,43 @@
set_tree234.union(SetA, SetB) = Set :-
set_tree234.union(SetA, SetB, Set).
-set_tree234.union(empty, !Set).
-set_tree234.union(two(E0, T0, T1), !Set) :-
- set_tree234.union(T0, !Set),
+set_tree234.union(SetA, SetB, Set) :-
+ % The amount of work that do_union has to do is proportional to the
+ % number of elements in its first argument. We therefore want to pick
+ % the smaller input set to be the first argument.
+ %
+ % We could count the number of arguments in both sets, but computing the
+ % tree height is *much* faster, and almost as precise.
+ set_tree234.height(SetA, HeightA),
+ set_tree234.height(SetB, HeightB),
+ ( HeightA =< HeightB ->
+ set_tree234.do_union(SetA, SetB, Set)
+ ;
+ set_tree234.do_union(SetB, SetA, Set)
+ ).
+
+:- pred set_tree234.do_union(set_tree234(T)::in, set_tree234(T)::in,
+ set_tree234(T)::out) is det.
+
+set_tree234.do_union(empty, !Set).
+set_tree234.do_union(two(E0, T0, T1), !Set) :-
+ set_tree234.do_union(T0, !Set),
set_tree234.insert(E0, !Set),
- set_tree234.union(T1, !Set).
-set_tree234.union(three(E0, E1, T0, T1, T2), !Set) :-
- set_tree234.union(T0, !Set),
+ set_tree234.do_union(T1, !Set).
+set_tree234.do_union(three(E0, E1, T0, T1, T2), !Set) :-
+ set_tree234.do_union(T0, !Set),
set_tree234.insert(E0, !Set),
- set_tree234.union(T1, !Set),
+ set_tree234.do_union(T1, !Set),
set_tree234.insert(E1, !Set),
- set_tree234.union(T2, !Set).
-set_tree234.union(four(E0, E1, E2, T0, T1, T2, T3), !Set) :-
- set_tree234.union(T0, !Set),
+ set_tree234.do_union(T2, !Set).
+set_tree234.do_union(four(E0, E1, E2, T0, T1, T2, T3), !Set) :-
+ set_tree234.do_union(T0, !Set),
set_tree234.insert(E0, !Set),
- set_tree234.union(T1, !Set),
+ set_tree234.do_union(T1, !Set),
set_tree234.insert(E1, !Set),
- set_tree234.union(T2, !Set),
+ set_tree234.do_union(T2, !Set),
set_tree234.insert(E2, !Set),
- set_tree234.union(T3, !Set).
+ set_tree234.do_union(T3, !Set).
set_tree234.union_list(Sets) = Union :-
set_tree234.union_list(Sets, Union).
@@ -1937,54 +1955,66 @@
set_tree234.intersect(SetA, SetB, Set).
set_tree234.intersect(SetA, SetB, Intersect) :-
- set_tree234.intersect_2(SetA, SetB, empty, Intersect).
+ % The amount of work that do_intersect has to do is proportional to the
+ % number of elements in its first argument. We therefore want to pick
+ % the smaller input set to be the first argument.
+ %
+ % We could count the number of arguments in both sets, but computing the
+ % tree height is *much* faster, and almost as precise.
+ set_tree234.height(SetA, HeightA),
+ set_tree234.height(SetB, HeightB),
+ ( HeightA =< HeightB ->
+ set_tree234.do_intersect(SetA, SetB, empty, Intersect)
+ ;
+ set_tree234.do_intersect(SetB, SetA, empty, Intersect)
+ ).
-:- pred set_tree234.intersect_2(set_tree234(T)::in, set_tree234(T)::in,
+:- pred set_tree234.do_intersect(set_tree234(T)::in, set_tree234(T)::in,
set_tree234(T)::in, set_tree234(T)::out) is det.
-set_tree234.intersect_2(empty, _SetB, !Intersect).
-set_tree234.intersect_2(two(E0, T0, T1), SetB, !Intersect) :-
- set_tree234.intersect_2(T0, SetB, !Intersect),
+set_tree234.do_intersect(empty, _SetB, !Intersect).
+set_tree234.do_intersect(two(E0, T0, T1), SetB, !Intersect) :-
+ set_tree234.do_intersect(T0, SetB, !Intersect),
( set_tree234.contains(SetB, E0) ->
set_tree234.insert(E0, !Intersect)
;
true
),
- set_tree234.intersect_2(T1, SetB, !Intersect).
-set_tree234.intersect_2(three(E0, E1, T0, T1, T2), SetB, !Intersect) :-
- set_tree234.intersect_2(T0, SetB, !Intersect),
+ set_tree234.do_intersect(T1, SetB, !Intersect).
+set_tree234.do_intersect(three(E0, E1, T0, T1, T2), SetB, !Intersect) :-
+ set_tree234.do_intersect(T0, SetB, !Intersect),
( set_tree234.contains(SetB, E0) ->
set_tree234.insert(E0, !Intersect)
;
true
),
- set_tree234.intersect_2(T1, SetB, !Intersect),
+ set_tree234.do_intersect(T1, SetB, !Intersect),
( set_tree234.contains(SetB, E1) ->
set_tree234.insert(E1, !Intersect)
;
true
),
- set_tree234.intersect_2(T2, SetB, !Intersect).
-set_tree234.intersect_2(four(E0, E1, E2, T0, T1, T2, T3), SetB, !Intersect) :-
- set_tree234.intersect_2(T0, SetB, !Intersect),
+ set_tree234.do_intersect(T2, SetB, !Intersect).
+set_tree234.do_intersect(four(E0, E1, E2, T0, T1, T2, T3), SetB, !Intersect) :-
+ set_tree234.do_intersect(T0, SetB, !Intersect),
( set_tree234.contains(SetB, E0) ->
set_tree234.insert(E0, !Intersect)
;
true
),
- set_tree234.intersect_2(T1, SetB, !Intersect),
+ set_tree234.do_intersect(T1, SetB, !Intersect),
( set_tree234.contains(SetB, E1) ->
set_tree234.insert(E1, !Intersect)
;
true
),
- set_tree234.intersect_2(T2, SetB, !Intersect),
+ set_tree234.do_intersect(T2, SetB, !Intersect),
( set_tree234.contains(SetB, E2) ->
set_tree234.insert(E2, !Intersect)
;
true
),
- set_tree234.intersect_2(T3, SetB, !Intersect).
+ set_tree234.do_intersect(T3, SetB, !Intersect).
set_tree234.intersect_list(Sets) = Intersect :-
set_tree234.intersect_list(Sets, Intersect).
@@ -2047,7 +2077,6 @@
%------------------------------------------------------------------------------%
- % count the number of elements in a tree
set_tree234.count(empty) = 0.
set_tree234.count(two(_, T0, T1)) = N :-
N0 = set_tree234.count(T0),
@@ -2065,6 +2094,21 @@
N3 = set_tree234.count(T3),
N = 3 + N0 + N1 + N2 + N3.
+:- pred set_tree234.height(set_tree234(T)::in, int::out) is det.
+
+set_tree234.height(Tree, Height) :-
+ (
+ Tree = empty,
+ Height = 0
+ ;
+ ( Tree = two(_, T0, _)
+ ; Tree = three(_, _, T0, _, _)
+ ; Tree = four(_, _, _, T0, _, _, _)
+ ),
+ set_tree234.height(T0, T0Height),
+ Height = T0Height + 1
+ ).
+
%------------------------------------------------------------------------------%
set_tree234.fold(_Pred, empty, !A).
--------------------------------------------------------------------------
mercury-reviews mailing list
Post messages to: mercury-reviews at csse.unimelb.edu.au
Administrative Queries: owner-mercury-reviews at csse.unimelb.edu.au
Subscriptions: mercury-reviews-request at csse.unimelb.edu.au
--------------------------------------------------------------------------
More information about the reviews
mailing list