
Declarative programming
in Mercury
A guide to Mercury’s declarative and operational semantics

MARK BROWN

Version 0.4, March 2023

ii

Copyright © 2022–2023, YesLogic Pty. Ltd.
This work is distributed under the Creative Commons Attribution-ShareAlike 4.0
International (CC BY-SA 4.0) license. To view a copy of the license, visit:
https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/

Contents

Preface v

1 Introduction 1
1.1 Purpose . 1
1.2 Mercury programming in a nutshell 2
1.3 Notation . 3
1.4 Outline of the guide . 3

2 Declarative semantics by example 5
2.1 First examples . 5
2.2 Intended interpretations . 7
2.3 Running example: queue ADT 8
2.4 Purity . 9

2.4.1 Types, modes, and purity 9
2.4.2 Mode-dependent clauses 10
2.4.3 Case study: string.append/3 11

2.5 Partial correctness . 12
2.6 Declarative debugging . 14
2.7 Summary . 17

3 First-order predicate calculus 19
3.1 Overview . 19
3.2 Syntax . 20
3.3 Expressions and goals . 22
3.4 Implicit quantification . 23
3.5 Clauses . 23
3.6 First-order logic with equality 24
3.7 Axioms . 25

3.7.1 What are axioms? . 25
3.7.2 Equality axioms . 25
3.7.3 Clause soundness axioms 27
3.7.4 Combined clause soundness axioms 28
3.7.5 Clause completeness axioms 29

iii

iv CONTENTS

3.7.6 Predicate and function completion 30
3.7.7 Mode-determinism assertions 31

3.8 Classical semantics . 32
3.8.1 Universes . 32
3.8.2 Assignments . 33
3.8.3 Interpretations . 33
3.8.4 Models . 35

3.9 Example . 37
3.10 Philosophical remarks . 39

4 Operational semantics 41
4.1 Overview . 41
4.2 Queries . 42
4.3 Substitutions . 42
4.4 Unification . 43
4.5 SLD Resolution . 45
4.6 Soundness and completeness . 48
4.7 Operational incompleteness . 49
4.8 Negation-as-failure . 50
4.9 Structural rules . 51
4.10 What does SLD stand for? . 52

5 The execution algorithm 53
5.1 Run-time unification . 53
5.2 Term representation . 54
5.3 Switches . 55

6 Extensions 57
6.1 Higher-order code . 57
6.2 Partial functions . 59
6.3 Exceptions . 60
6.4 Types . 61

7 Non-classical models 63

A Glossary index 65

Preface

This guide started life as some notes and slides aimed at helping YesLogic devel-
opers learn the basic principles of logic programming. Most of the developers had
plenty of experience in languages such as Haskell and Rust; the main barrier to
learning logic programming was, I think, a lack of familiarity with much of the jar-
gon, as well as much of the folklore. Some help was in order from the developers
more experienced in Mercury.

The notes first evolved into an article, and then into the format it currently takes.
There’s a lot more information that could be added, but publishing it in its current
form seems like it would still be of use. YesLogic has generously agreed to its
release.

Some additional topics:
• A lot more about types, modes, determinism, and uniqueness.
• Modules and abstract data types.
• Minimal model semantics.
• Many-sorted algebra. In the current version we just map everything down to

first-order, since part of the argument for declarative programming is that the
models are relatively simple.

• User-defined equality and comparison.
• Partial instantiatedness.
• Bibliographical references.
• . . .

There is also room for many more working examples.
Chapter 7 is not yet written, though I consider Lee and Harald’s work in this

area to be important to draw people’s attention to. Hopefully, this will be able to be
addressed in a future version.
Mark Brown
March 2023

v

vi PREFACE

Chapter 1

Introduction

1.1 Purpose

In the Formal Semantics chapter of the Mercury Language Reference Manual, the
declarative semantics of Mercury is given in a single paragraph. Readers with suf-
ficient background in logic programming would find the definition familiar: a pred-
icate calculus theory with a “language” specified by the type declarations in the
program, and a set of axioms derived from the “completion” of the program. To
readers without that background, however, making sense of this can be challenging
for a number of reasons.

The case is similar with the operational semantics, which is defined with ref-
erence to “SLDNF resolution”. The vast majority of people who know about this
topic also already know logic programming, so this is not helpful for those who are
learning.

The challenge for readers is particularly difficult since existing resources on the
predicate calculus tend to come in two forms:

1. Those that focus on logic as it pertains to logic programming.1 While these
do a good job at connecting the logic with an operational semantics (that is,
giving the logic a computational interpretation) there is often relatively little
focus on the completion semantics, which is how Mercury is defined.

2. Those that focus on classical logic in its own right.2 While these generally
offer a more complete picture of the logic they do not usually discuss resolu-
tion, which is the computational mechanism used in logic programming. In
addition, the level of mathematical rigor, while important, can obscure the
issues most relevant to logic programming.

This guide aims to bridge the gap between theory and practice. It is intended for
programmers who have some knowledge ofMercury and want a deeper understand-
ing, but who are unable to derive much practical information from the resources

1For example, Apt, K.R., 1997. From logic programming to Prolog. London: Prentice Hall.
2For example, https://plato.stanford.edu/entries/logic-classical/.

1

https://plato.stanford.edu/entries/logic-classical/

2 CHAPTER 1. INTRODUCTION

REQUIREMENTS OUTCOMES-user expectations

?

6

FORMULAS SOLUTIONS-declarative semantics

?

6

GOALS ANSWERS-operational semantics

Figure 1.1: Mercury programming in a nutshell.

currently available. It is not presented with the same level of rigor as many other
articles on this topic, for example, proofs are not provided for our claims. Rather,
the intent is to put programmers in a better position to make the most practical use
of existing resources.

1.2 Mercury programming in a nutshell

The main theme of this guide will be to show the parallels between syntax and
semantics, of which there are many. By syntaxwemean the sequences of characters
that constitute part or all of a program. The word semantics means “meaning”, but
it also has a technical definition in the context of programming languages, which
is that a program semantics constrains the program’s behaviour with respect to a
particular set of observables.

Figure 1.1 gives a conceptual view of the programming process in Mercury. At
a high level, a programmer is given requirements, and in some way or other they
need to generate outcomes in accordance with user expectations. They formulate
the requirements logically, and with this formulation they can use the declarative
semantics to determine what solutions—assignments of values to variables—arise
as a consequence. These solutions are then interpreted in terms of the original
problem domain, to generate outcomes that (hopefully) satisfy the user.

At a lower level, the programmer’s mental formulation is expressed as goals
in Mercury. The compiler and runtime system compute answers to the goals in a
manner determined by the operational semantics, and these answers can in turn be
understood by the programmer as solutions to the formulas.

These two levels of reasoning, the first more abstract and the second more con-
crete, are represented by the two horizontal arrows in the lower part of the diagram.
At each level there is a syntax to express the ideas and a semantics to reason about

1.3. NOTATION 3

what they mean. A close correspondence exists between the two, in that they place
the same constraints on a program’s observed behaviour.

The difference between the two levels of reasoning, and the reason we would
want to consider having two distinct levels in the first place, comes down to how
they are defined. The declarative semantics is defined in terms of semantic concepts
understood by the programmer, and aims to characterize the programmer’s mental
picture of how a program behaves. On the other hand, the computer does not have
such a mental picture—it blindly manipulates symbols without understanding how
the programmer will interpret the results—so the operational semantics aims to
characterize the program’s behaviour as symbolic manipulation. Thus, the opera-
tional semantics is defined in terms of the syntax.

It is the declarative and operational semantics, and the correspondence between
them, that is the principal subject of this guide.

1.3 Notation

With the dual syntax vs. semantics view in mind, we adopt a kind of parallel nota-
tion and terminology in this guide. When discussing program elements from a pri-
marily syntactic or operational point of view, we will use Mercury syntax written
in a monospace font, whereas when the discussion is from a semantic or declarative
point of view we will use conventional mathematical notation. Similarly, the termi-
nology used differs between the two sides, with terms that apply to the declarative
view having their counterparts in the operational view. Some examples of notation
and terminology are show in Figure 1.2.

Hopefully the reader’s intuition will be guided by this use of notation. We cau-
tion against taking the distinction too seriously, however, as it can sometimes be-
come blurred. Indeed, we will shortly introduce so-called Herbrand interpretations,
in which elements of syntax are used directly as elements of the semantic domain.

1.4 Outline of the guide

The outline of the remainder of this guide is as follows.
In Chapter 2 we give an informal picture of the declarative semantics, with a

focus on some simple examples. We aim to give a basic idea of what is meant by
declarative semantics, and also discuss some of the advantages that can be obtained
by thinking about Mercury programs in this way. This provides our motivation for
wanting a declarative semantics.

In Chapter 3 we define the syntax and semantics of first-order predicate calcu-
lus, and show how the declarative semantics of a Mercury program is expressed in
a predicate calculus theory. We give some examples of logical reasoning that can
tell us how our programs behave.

In Chapter 4 we give abstract algorithms for unification and resolution, and use
these as building blocks to define the operational semantics. We also define the

4 CHAPTER 1. INTRODUCTION

Semantic/declarative Syntactic/operational

variables: variables:
x X
y1,… , yn Y1, ..., YN

values: ground data terms:
123 123
f (a, g(b)) f(a,g(b))
a1,… , an a1, ..., aN

atomic formulas: atomic goals:
y = f (x) Y = f(X)
p(t1,… , tn) p(t1, ..., tN)

logical connectives: operators:
∧ ,
∨ ;
← :-

Figure 1.2: Examples of the parallel notationwewill use. The elements themselves
will be discussed in later chapters.

negation-as-failure rule that is used to implement negation and if-then-else. Some
important results in the meta-theory are given, which we use to show the corre-
spondence between the operational and the declarative viewpoints.

In Chapter 5 we give concrete details of how the implementation behaves at
run-time. These details enable programmers to better estimate operational charac-
teristics of their programs, such as stack and heap usage.

In Chapter 6 we extend our work to cover more aspects of the language. In
particular, we provide semantics for some Mercury constructs which are not well-
characterized in the classical semantics, such as partial functions and exceptions.

In Chapter 7 we present a non-classical interpretation of Mercury programs
that is useful for writing specifications and checking that they are correctly imple-
mented. This interpretation demonstrates that classical logic is not the only logic
that can be usefully applied to understanding Mercury programs.

Finally, a glossary index in Appendix A provides short definitions, as well as
page references, for many of the concepts discussed in the guide.

Chapter 2

Declarative semantics by example

2.1 First examples

Consider the code in Figure 2.1 that defines specialized versions of length and ap-
pend. A picture of the declarative semantics of len/1 is given in Figure 2.2. It
consists of a table of ground instances (that is, not containing any variables) of
the head of the len/1 function, where the result value is the correct length for the
given argument. The table is infinite, but like the multiplication table—which is
also infinite—it is relatively easy to get a picture of what is going on by looking at
(or thinking about) only a finite part of it.

Similarly, a picture of the declarative semantics of app/3 is given in Figure 2.3.
It again consists of a table of ground instances of the head of the app/3 predicate,
although in this case, since it is a predicate, there is no return value. Instead the
arguments must satisfy the relation that holds between two lists and the result of
appending them.

Tables like these are known as Herbrand interpretations. They assign a mean-
ing to each predicate or function by way of a mapping from ground atoms to truth
values: a ground atom is true if it is in the table, otherwise it is false. For exam-
ple, if the function symbol ‘+’ is interpreted as integer addition then the table will
contain entries such as 1 + 1 = 2. On the other hand, if it is interpreted as string
concatenation then the table will contain entries such as "1" + "1" = "11".

Herbrand interpretations are purely syntactic in nature. This reflects the com-
piler’s view of the program: the compiler does not know that len is supposed to
mean “list length”, it only knows it as a symbol. These interpretations also reveal
an important fact: the declarative semantics of a program can be understood in its
entirety by considering only the truth values taken by the ground atoms That is,
there is no need to consider terms that include variables from the program.

Furthermore, this way of thinking scales in the sense that, while we have given
examples of two common building blocks, the same applies to much larger pieces
of code with far more complexity in their intended interpretations. This ability to
scale is crucial for extending our methodology to real-world programs.

5

6 CHAPTER 2. DECLARATIVE SEMANTICS BY EXAMPLE

:- type e ---> a ; b.

:- func len(list(e)) = int.

len([]) = 0.
len([_ | Xs]) = 1 + len(Xs).

:- pred app(list(e), list(e), list(e)).
:- mode app(in, in, out) is det.

app([], Bs, Bs).
app([A | As], Bs, [C | Cs]) :-

app(As, Bs, Cs).

Figure 2.1: Specialized versions of length and append.

len([]) = 0
len([a]) = 1
len([b]) = 1
len([a, a]) = 2
len([a, b]) = 2
len([b, a]) = 2
len([b, b]) = 2

len([a, a, a]) = 3
len([a, a, b]) = 3
len([a, b, a]) = 3
len([a, b, b]) = 3
len([b, a, a]) = 3
len([b, a, b]) = 3
...

Figure 2.2: Interpretation of len/1.

app([], [], [])
app([], [a], [a])
app([a], [], [a])
app([], [b], [b])
app([b], [], [b])
app([], [a, a], [a, a])
app([a], [a], [a, a])
app([a, a], [], [a, a])

app([], [a, b], [a, b])
app([a], [b], [a, b])
app([a, b], [], [a, b])
app([], [b, a], [b, a])
app([b], [a], [b, a])
app([b, a], [], [b, a])
app([], [b, b], [b, b])
...

Figure 2.3: Interpretation of app/3.

2.2. INTENDED INTERPRETATIONS 7

2.2 Intended interpretations

An interpretation, generally, is something that allows the programmer to compre-
hend the meaning of terms, and to determine the truth of ground atoms, with rea-
sonable ease. Essentially, it is a specification. If an interpretation reflects what the
programmer intends to implement, it is called the intended interpretation.

To a programmer, even an informal definition can be sufficient. For example,
we could give the intended interpretations of len/1 and app/1 as follows:

for n ⩾ 0, len([t1,… , tn]) = n

for n ⩾ 0 and 0 ⩽ m ⩽ n, app([t1,… , tm], [tm+1,… , tn], [t1,… , tn])

Although we have used pseudo-code, it should be reasonably clear whether a par-
ticular ground atom is true or false in these interpretations. The truth value of goals
more generally can be determined by combining the truth values of atomic goals
according to the truth tables of classical logic.

It is the usual practice in Mercury to describe the intended interpretation (along
with any other pertinent information) in comments immediately preceding a pred or
func declaration. For example, in the Mercury standard library the declarations for
the list.length/1 function and the list.length/2 predicate appear as follows:

% length(List) = Length:
% length(List, Length):
%
% True iff Length is the length of List, i.e. if
% List contains Length elements.
%

:- func length(list(T)) = int.
:- pred length(list(_T), int).

Similarly, list.append/3 is described as follows:
% Standard append predicate:
% append(Start, End, List) is true iff
% List is the result of concatenating Start and End.
%

:- pred append(list(T), list(T), list(T)).

It should be easy to see that these are equivalent to the intended interpretations we
gave above.

It is a good idea to provide the intended interpretation for any functions or pred-
icates declared in the interface of a module. Doing this enables users of the module
to understand whether or not they are using the interface correctly.

We saw above that a list such as [1,2,3] can be given the intended interpre-
tation [1, 2, 3]. This might seem trivial, but it is worth noting that the former is

8 CHAPTER 2. DECLARATIVE SEMANTICS BY EXAMPLE

meant to represent a piece of Mercury syntax, while the latter is meant to be the
kind of notation that might be seen in a semi-formal mathematical proof. Thus it is
reasonable to use ellipses and subscripts, or other ad hoc notation, to describe the
list structures.

A basic example for lists is the “cons” function, which takes an element and a
list, and returns a new list with the element prepended. Since we do not need to
know anything about the element we can just call it x, and we can assume the list
takes the form [t1,… , tn], for some n ⩾ 0, and arbitrary elements ti. We can there-
fore say that the intended interpretation of cons is a function that, given element x
and list [t1,… , tn], returns the list [x, t1,… , tn].

We have already given intended interpretations for the list append predicate,
and for the list length function. The list append function can be specified as:

append([s1,… , sm], [t1,… , tn]) = [s1,… , sm, t1,… , tn]

Similarly, the list reverse function can be specified as:
reverse([t1,… , tn]) = [tn,… , t1]

We will use these interpretations later when we implement the queue ADT that is
specified in the next section.

2.3 Running example: queue ADT

In this section we give the intended interpretation for a (double-ended) queue ADT.
We will use this as a running example in the remainder of this guide.

The ADT includes abstract operations to initialize a queue, put elements at the
back and get them from the front, unput elements from the back and unget then at
the front, and convert the queue to an ordinary list. A queue can be interpreted as
a sequence of elements, using the same semi-formal mathematical notation as for
lists.

The initialization function, init/0, is easy to specify because it just returns (a
representation of) the empty queue:

init = []

Putting an element at the end of the queue is done with the put/3 predicate, which
takes an element, the queue prior to putting the element at the end, and the queue
after this has been done:

put(x, [t1,… , tn], [t1,… , tn, x])

Getting an element from the front of the queue is done with a get/3 predicate, which
is similar:

get(x, [x, t1,… , tn], [t1,… , tn])

2.4. PURITY 9

:- pred append(list(T), list(T), list(T)).
:- mode append(di, di, uo) is det.
:- mode append(in, in, out) is det.
:- mode append(in, in, in) is semidet. % implied
:- mode append(in, out, in) is semidet.
:- mode append(out, out, in) is multi.

Figure 2.4: Declarations for list.append/3 in the standard library.

The inverse operations, unput/3 and unget/3, are the same as the forward operations
except that the second and third arguments are reversed:

unput(x, [t1,… , tn, x], [t1,… , tn])
unget(x, [t1,… , tn], [x, t1,… , tn])

Finally, the function list/1, that converts a queue to an ordinary list, is trivial to
specify:

list([t1,… , tn]) = [t1,… , tn]

That is, the intended interpretation of list/1 is the identity function.
When implementing queues according to this specification, the queue type may

be defined differently to the list type, though they are both interpreted as sequences
of elements. Assuming they are different, the implementation of list/1 will not be
trivial like the specification, but will have to convert between the two representa-
tions.

2.4 Purity

2.4.1 Types, modes, and purity

The code we have seen so far is considered pure. Code that is written using all but
a small number of Mercury constructs is automatically pure—most Mercury code
is pure without the programmer needing to think about it. We give the following
definition of what exactly we mean by purity.
Definition 1 (Purity). A predicate or function is pure if there exists a declarative in-
terpretation describing its behaviour, that consistently applies in all circumstances.

In other words, if for a given function or predicate we can picture in our minds a
Herbrand interpretation that characterizes the outcome of all possible calls, then
that predicate or function is pure.

In the last section we gave the pred declaration for list.append/3 as it ap-
pears in the standard library. Figure 2.4 gives this pred declaration again, along
with all of the declared modes.

10 CHAPTER 2. DECLARATIVE SEMANTICS BY EXAMPLE

The role of the pred declaration, which supplies the argument types, should be
clear as regards the interpretations we have seen so far: a ground atom that is true
in the interpretation will have arguments that are correctly typed, for some values
of the type variables. The compiler is able to check that this is the case.

The role of the mode declarations is perhaps not so clear in the declarative se-
mantics, but in conjunction with the determinism each one constrains the set of
ground atoms that are true, for the predicate or function as a whole. Importantly,
and in line with our definition above, the same interpretation applies to all of the
modes. In Mercury, a predicate or function is pure only if it has a consistent inter-
pretation across all calls, regardless of the mode in which the call is made.

This means, for example, that if a call to append([1], [2, 3], z) yields a solution
z = [1, 2, 3], which it does, then a call to append(x, y, [1, 2, 3]) should at some stage
yield the solution x = [1], y = [2, 3], which it also does. Both solutions derive from
the fact that append([1], [2, 3], [1, 2, 3]) is true in the declarative interpretation. The
same applies for any other pair of calls to different modes of append.

It should not be surprising that this is the case. The declarative semantics deter-
mines which solutions will be produced, and it in turn is determined by the clauses
that define a predicate or function. Since the same clauses apply to all modes, no
discrepancy can arise.

2.4.2 Mode-dependent clauses

It can be useful to define multi-moded predicates such as append/3, the use of
which can readily enable larger multi-moded predicates to be implemented. How-
ever, it can sometimes be the case that, irrespective of how the clauses defining a
predicate are written, making one mode efficient inevitably results in another mode
being inefficient. An example of this is the following mode of append/3, which is
commented out in the standard library.

% :- mode append(out, in, in) is semidet.

The explanation for why it is commented out says that the mode “is semidet in the
sense that it does not succeed more than once—but it does create a choice-point,
which means both that it is inefficient, and that the compiler can’t deduce that it is
semidet. Use remove_suffix instead.”

If such amode is nonetheless required for a predicate, and the inefficiencywould
otherwise be unacceptable, then one solution is to implement the predicate using
mode-dependent clauses, also known as “different clauses for differentmodes”. Do-
ing this, however, would invalidate our claim from the previous section that the
declarative semantics is consistent across modes, since the meaning is no longer
determined from a single set of clauses. If the clauses for different modes express
different relations, then a consistent declarative semantics cannot exist.

So this is an issue of purity. Having a consistent declarative semantics is re-
quired, yet there is no way for the compiler to verify, in general, that two different

2.4. PURITY 11

sets of clauses express the same relation. As such, the compiler will treat a pred-
icate defined using mode-dependent clauses as impure, unless the programmer is
prepared to promise otherwise.

In the Prolog literature, impure predicates—those that do not have a consis-
tent declarative semantics—are typically referred to as “non-logical”. (Note that in
Section 3.2, we will see this term used in a different sense.) The canonical example
of a non-logical predicate in Prolog is var/1, which succeeds if and only if the
argument is not bound. This can be implemented in Mercury as follows.

:- impure pred var(T).
:- mode var(in) is failure.
:- mode var(unused) is det.

var(_::in) :- false.
var(_::unused) :- true.

A call to var(X)would succeed if, at the point of call, Xwas not bound to anything.
This implies that the predicate is interpreted as true for every possible argument
value. If the same call was made with X bound to a, however, then the call would
fail. This implies that the predicate is interpreted as false for the value a, which con-
tradicts the previous implication. Thus it can be seen that the predicate is not pure
according to our definition, since there does not exist a declarative interpretation
that applies to all modes.

In the next section we give an example, which arose in the course of developing
the standard library, of using the declarative semantics to resolve a problem related
to the multiple modes of the string.append/3 predicate.

2.4.3 Case study: string.append/3

In early versions of theMercury, strings were defined as NUL terminated sequences
of ASCII characters. With such an arrangement, strings could be regarded as equiv-
alent to lists of characters, and a string.append/3 predicate could be defined that
was analogous to the append operation on lists. In particular, the predicate had a
“forward” mode that appended strings, as well as a “reverse” mode that split them
apart.

At some point the switch to Unicode was made, which means that strings could
no longer be considered sequences of characters. Rather, strings are defined as
sequences of code units, which in Unicode are not the same thing as code points
(characters). While a sequence of code points, in general, consists of a well-formed
sequence of one or more code units, the sequence of code units that constitutes a
string is not necessarily well-formed.

In the forward mode of the Unicode version of string.append/3, the be-
haviour is to append the sequences of code units representing the (possibly ill-
formed) strings. For backwards compatibility it is desirable to provide the reverse
mode that was previously available, but what should such an implementation do,

12 CHAPTER 2. DECLARATIVE SEMANTICS BY EXAMPLE

precisely? At what places should the string be split—between code points where
possible, as would make most sense, or between all code units even if in the middle
of a code point?

We can use the declarative semantics to help answer these questions. Consider
a well-formed string s3 that has been split into two strings, s1 and s2, at a point that
is in the middle of a sequence of code units representing one of the code points.
Thus, neither s1 nor s2 is well-formed, despite the fact that s3 is.

We would expect the forward mode to append s1 and s2 to form s3. Thus it
should be clear that the interpretation of append must include ground atoms such
as append(s1, s2, s3), in which the first two arguments are not well-formed, while
the third is.

This forces our hand on the reverse mode, however. Since these ground atoms
are true in the declarative semantics, the reverse mode must include them in its
solutions. In other words, the reverse mode, if it is to be included, cannot just split
between code points, it must also split between code units that comprise a single
code point. This is true even if the string being split is well-formed.

A reverse mode of string.append/3 in Unicode would therefore be funda-
mentally different from the equivalent in ASCII, in which a well-formed string (that
is, not containing any NUL characters) could never be split into strings that are ill-
formed.

In the end this was considered too different from the original intent of the predi-
cate, and too likely to subtly break code that relies—unwisely, given the possibility
in Unicode of ill-formed strings—on the reverse mode only splitting between code
points. Thus removing the mode and putting that functionality into a separate pred-
icate was deemed the best solution, despite the fact that it would cause the compiler
to issue an error until affected code was updated.

2.5 Partial correctness

Clauses are supposed to state things that are true in the intended interpretation.
For example, in Figure 2.1 the first clause of len/1 is a fact that states that the
length of the empty list is zero. The second is a fact that states that, no matter what
expressions we substitute for the variables _ and Xs, the length of [_ | Xs] will
be one greater than the length of Xs—in other words the length of a non-empty list
is one greater than the length of its tail. In each instance the statements are true
according to our intended interpretation.

Furthermore, the clauses cover every possible list, in the sense that every list
is either empty or non-empty, and every non-empty list has a tail that is also a list.
Perhaps surprisingly, this is enough to conclude that our implementation is correct,
at least as far as arguments and return values are concerned.

Our argument here depends on two points, which may be regarded as two sides
of the same coin:

• Each of the clauses defining the function is a valid statement, where by valid

2.5. PARTIAL CORRECTNESS 13

we mean that every instance of the clause is true in the intended interpre-
tation. This ensures that there are no “wrong answers”, which are ground
atoms that are true according to the program as written, but are not intended
to be true. We refer to this condition as clause soundness.

• Between them, the clauses cover every possible ground atom that is true in
the intended interpretation. This ensures that there are no “missing answers”,
which are ground atoms that are false according to the program as written, but
are not intended to be false. We refer to this condition as clause completeness.

The two classes of bugs being avoided here, wrong answers and missing answers,
are the bugs that are observable in the (classical) declarative semantics.

It is worth noting that, inmany cases, Mercury’smode and determinism systems
can make the compiler check the coverage for us: if the determinism indicates that
calls cannot fail (that is, if the determinism is det, multi, or cc_multi), then all
possible values of the type must be covered for any argument with mode in. In this
case the len/1 function is det and the argument is an input, because the default
function mode is being used. Had we not covered every possible list, the compiler
would have issued a determinism error, so we can safely assume that the definition
covers all possible solutions. The same also applies to any other function declared
with the default mode.

Continuing with the examples, the first clause of app/3 is a fact that states that
if you append the empty list and any other list, the result will be the same as the
other list. The second clause is a rule; these are taken as logical implications in
which the body implies the head (that is, :- is interpreted as ←). So this is stating
that, for any variable assignment, if Cs is the result of appending As and Bs, then
[X|Cs] is the result of appending [X|As] and Bs. Again, both clauses are valid
according to the intended interpretation, and the definition is clause complete. In
this case clause completeness means that, for every atom that is intended to be true,
there is either a fact that covers it or a rule whose head covers it and (under the same
variable assignment) whose body is intended to be true.

Since both conditions are satisfied, we can conclude in a similar way to len/1
that our implementation of app/3 is correct.

We have been saying “correct” here, but this is only as far as the arguments (and
return values, if present) are concerned, which is to say that there are neither wrong
nor missing answers. Other kinds of bugs are not observable in the declarative
semantics, such as unintended exceptions or nontermination, poor computational
complexity, or unbounded stack usage. We therefore refer to correctness in the
above sense as partial correctness. Notionally this is akin to type correctness, in
the sense that it rules out a certain class of bugs but cannot rule out all bugs.

The results of this section can be summarized with a theorem.
Theorem 1 (Partial correctness). If every clause in a program is true in the in-
tended interpretation and every predicate and function definition is clause complete
according to this interpretation, then the program is partially correct.

14 CHAPTER 2. DECLARATIVE SEMANTICS BY EXAMPLE

:- type integer == list(int).

:- func to_string(integer) = string.
to_string([]) = "0".
to_string(As @ [_ | _]) =

append_list(map(string, reverse(As))).

:- func add(integer, integer) = integer.
add([], Bs) = Bs.
add(As @ [_ | _], []) = As.
add([A | As], [B | Bs]) = [A + B | add(As, Bs)].

Figure 2.5: A buggy implementation of arbitrary precision integers.

A corollary of this is that if a program is not partially correct, that is, if it produces
wrong answers or misses answers that it should have produced, then there is at
least one clause in the program with an instance that is not true in the intended
interpretation, or at least one definition that is not clause complete.

2.6 Declarative debugging

The process of debugging, broadly speaking, can be broken down into the following
three phases.

1. Observing a bug symptom. For declarative debugging, the symptoms of in-
terest are wrong answers and missing answers.

2. Bug localization. For declarative debugging, we can narrow the immediate
source of a bug down to a single clause or definition. Theorem 1 implies that
this is possible.

3. Bug fixing. This is beyond the scope of what is usually called declarative
debugging, but understanding the code in terms of the intended interpretation
can still help with actually fixing the bug.

It is in the second phase, bug localization, that declarative debugging is particularly
effective.

Consider the snippet of (buggy) code in Figure 2.5, that represents arbitrary
precision integers as lists of decimal digits starting from the least significant. It
provides functions to convert an integer to a string and to add integers.

If we call to_string(add([2],[5,1])) the answer "17" is returned, which
is the answer that we intended. If we call to_string(add([6],[7])) it returns
"13", which is also the answer that we intended—in this case there were incorrect
intermediate values, but we did not observe this in the result so we are not in a

2.6. DECLARATIVE DEBUGGING 15

position to commence debugging. If we call to_string(add([2,6,1],[3,7]))
then we intend it to return "235" but instead it returns "1135", which is a wrong
answer. Thus we have observed a bug symptom.

To localize this bug we start at the bug symptom, which for us is the atom that
was incorrect:

to_string(add([2,6,1],[3,7])) = "1135"

We can first check the call to add/2. In this case the following atom appears:
add([2,6,1],[3,7]) = [5,13,1]

This is false in the intended interpretation, because integers are supposed to consist
of decimal digits in the range 0 to 9. Since this is a wrong answer, we proceed
to debug the atom. It matches the third clause of add/2, the instance of which
contains the following calls:

2 + 3 = 5
add([6,1],[7]) = [13,1]

The first is obviously true, but the second is false because 16 + 7 = 23, so we
intended the result to be [3,2]. Again, the third clause is matched and the calls
made are:

6 + 7 = 13
add([1],[]) = [1]

In this case both atoms are true in the intended interpretation. Since in the third
clause of add/2 the result is wrong, and since none of the calls it made showed
any symptoms, we can conclude that the third clause contains a bug. And indeed it
does, since it does not allow for a carry bit to flow over to the next element.

The transcript of an mdb session, in which the declarative debugger is used to
algorithmically debug the same problem as above, is shown in Figure 2.6. The
process looks a bit different to how we just described it, but that is because the
debugger assumes it does not need to ask about the correctness of +, for example.

Bug fixing, the third phase of debugging, might start with defining a function
add_with_carry/3, where the intended interpretation is:

for a, b ∈ ℤ, c ∈ {0, 1}, add_with_carry(a, b, c) = a + b + c

Then add/2 could be implemented as:
add(As, Bs) = add_with_carry(As, Bs, 0).

Implementing the function add_with_carry/3 is left as an exercise.

16 CHAPTER 2. DECLARATIVE SEMANTICS BY EXAMPLE

Melbourne Mercury Debugger, mdb version DEV.
Copyright 1998-2012 The University of Melbourne.
Copyright 2013-2023 The Mercury team.
mdb is free software; there is absolutely no warranty...

1: 1 1 CALL pred arbint.main/2-0 (det)
mdb>

2: 2 2 CALL func arbint.add/2-0 (det)
mdb> f

17: 2 2 EXIT func arbint.add/2-0 (det)
mdb> dd
add([2, 6, 1], [3, 7]) = [5, 13, 1]
Valid? n
add([6, 1], [7]) = [13, 1]
Valid? n
add([1], []) = [1]
Valid? y
Found incorrect contour:
+(6, 7) = 13
add([1], []) = [1]
add([6, 1], [7]) = [13, 1]
Is this a bug? y

16: 4 3 EXIT func arbint.add/2-0 (det)
mdb> quit -y

Figure 2.6: An mdb declarative debugging session.

2.7. SUMMARY 17

2.7 Summary

Interpretations of function and predicate symbols provide us with a meaning for our
programs. Herbrand interpretations give the meaning from the compiler’s point of
view, in purely syntactic terms. More generally, interpretations describe, some-
times informally, the behaviour of the functions and predicates in a program with
regard to its inputs and outputs.

The interpretation of multi-moded predicates greatly helps in clarifying how
different modes should behave. This is particularly important when considering
the use of mode-dependent clauses, such as with the standard library implementa-
tion of string.append/3, for which the compiler cannot completely verify logical
consistency.

One interpretation in particular is called the intended interpretation. This acts
as a specification that reflects what the programmer intends to implement. With it,
we can determine the partial correctness of a program, which allows us to rule out
certain classes of bugs.

In particular, it is expressive enough to allow us to determine whether an indi-
vidual clause is sound, and whether a definition is complete. Thus, it can assist with
bug localization and fixing, as well as help with avoiding bugs in the first place. We
have given some simple examples to illustrate this, as well as introducing a queue
ADT which we will use as a running example.

In the remainder of this guide we take a more formal look at how Mercury’s
semantics is defined, as well as some additional topics of interest.

18 CHAPTER 2. DECLARATIVE SEMANTICS BY EXAMPLE

Chapter 3

First-order predicate calculus

3.1 Overview

In this chapter we introduce first-order predicate calculus, also known as first-order
logic, or classical logic. This mathematical notion forms the basis of Mercury’s
declarative semantics, via the translation ofMercury code into axioms of a predicate
calculus theory.

Articles on first-order predicate calculus typically define a syntax, then intro-
duce a deductive system that allows proofs to be constructed from inference rules,
then define a semantics in terms of “interpretations” and “models” and prove some
results in the meta-theory. We will take a similar approach, however we present the
semantics, with a particular focus on how (first-order) Mercury programs are con-
verted to logic formulas, before the deductive system is covered. In the next chapter
we will present the deductive system, which gives a computational interpretation
to the logic.

Mercury supports higher-order code, of course, so a first-order description will
not directly cover all of it. First-order logic is also untyped. Despite this, we can
reduce Mercury’s declarative semantics to first-order logic, which is conceptually
much simpler than the alternatives—first-order theories have relatively simplemod-
els, such as the Herbrand interpretations from the previous chapter—so that is the
approach we will take in this guide. We will discuss types and higher-order code,
plus some other extensions of the basic logic, in Chapter 6.

In the remainder of this chapter we give the syntax of predicate calculus, and
show how basic Mercury constructs generate formulas, and howMercury programs
generate axioms. We then give a formal definition of the classical semantics that
results from those axioms. Some examples of ad hoc proofs based on the semantics
are provided, to help illustrate the concepts introduced, and to motivate the opera-
tional semantics that we define in detail in the next chapter. We conclude the chapter
with some philosophical remarks about the role of classical logic in understanding
computer programs.

19

20 CHAPTER 3. FIRST-ORDER PREDICATE CALCULUS

1. An infinite set of variables: x, y, z, . . .
2. Logical constants: true, false
3. Logical connectives: ∧, ∨, ¬,←, →, ↔, . . .
4. Quantifiers: ∀, ∃
5. Logical relations: =
6. Punctuation: we will use parentheses and commas in the usual way.
7. For n ⩾ 0, a set of function symbols with arity n: f∕2, g∕1, . . .
8. For n ⩾ 0, a set of predicate symbols with arity n: p∕2, q∕3, . . .

Figure 3.1: Symbols used in predicate calculus.

3.2 Syntax

The syntax of first-order logic is given in terms of a set of symbols, along with rules
to say how they can be put together to make well-formed terms and formulas. The
symbols we use are listed in Figure 3.1.

Some sources refer to the symbols in categories 1 to 6 as logical, while referring
to the symbols in categories 7 and 8 as non-logical. It is important to note that this
term is being used in a different sense to that in Section 2.4. In this context it is
referring to whether symbols are defined as part of the logic itself, or defined as
part of a particular theory. To put it in programming terms, “logical” here means
that the symbol is a fixed part of the language, while “non-logical” really just means
user-defined.

By convention, we will use the names v,w, x, y and z, possibly with subscripts,
to stand for arbitrary variables. A sequence of variables may be written with an
overbar, as in x̄. The logical constants, logical connectives and quantifiers have their
usual meanings, and we will write formulas following the usual rules of operator
precedence. Parentheses will be used in the conventional way to override this when
required.

The non-logical symbols are derived from declarations in the Mercury pro-
gram. Function symbols include the data constructors declared in discriminated
union types, as well as the declared functions. Predicate symbols are the declared
predicates. We will use names such as f and g to stand for arbitrary functions, and
names such as p, q and r to stand for arbitrary predicates. We will sometimes refer
to function symbols with arity zero as constants, and use names such as a, b and c
to stand for arbitrary constants.

The arity of a predicate or function symbol is listed after a slash, for example
f∕2 or p∕1. However, we will sometimes leave the arity off entirely when it is zero

3.2. SYNTAX 21

Terms:
t ∶∶= x variable

| a constant
| f (t1,… , tn) compound term

Formulas:
� ∶∶= true always true

| false always false
| t1 = t2 equation
| p(t1,… , tn) predicate call
| �1 ∧… ∧ �n conjunction
| �1 ∨… ∨ �n disjunction
| ¬�1 negation
| ∀x. �1 universal quantification
| ∃x. �1 existential quantification

Figure 3.2: The grammar rules for terms and formulas.

or clear from the context. Note that the arity is part of each symbol’s identity: two
symbols with the same name but different arities are considered different symbols.

The grammar rules for the predicate calculus are shown in Figure 3.2. Terms
are constructed from variables and function symbols in essentially the same way
that expressions are in Mercury. We will refer to arbitrary terms using names such
as s and t. Terms that are constructed using only variables and data constructors
(that is, with no function calls) play an important role in our discussion; we will
refer to these as data terms. A data term that contains no variables we will refer to
as a ground data term.

We will assume the existence of two function symbols, [|]∕2 and []∕0, repre-
senting the list constructor and the empty list, respectively. We will write list terms
in an analogous way to Mercury list syntax, for example, we will write [1, 2, 3] as
a shorthand for [|](1, [|](2, [|](3, []))).

Formulas are either atomic or compound. Atomic formulas are either logical
constants, equations, or predicate calls. Compound formulas are constructed from
atomic formulas using connectives and quantifiers, in essentially the same way that
goals are in Mercury. We will refer to arbitrary formulas using names such as �
and .

Quantifiers with multiple variables stand for the same quantifier with each vari-
able in turn, that is, ∀xy.� is an abbreviation for ∀x.∀y.�. Also, the scope of a
quantifier extends as far as possible; parentheses will be used if the scope needs to
be limited.

A variable occuring in a formula is bound if it is captured by a quantifier, other-
wise it is free. For example, x is bound and y is free in the formula ∀x.f (x, y) = y.
(Despite the nomenclature, these notions are different from the notions of bound

22 CHAPTER 3. FIRST-ORDER PREDICATE CALCULUS

Expressions⇒ Terms:
X x
a a
f(t1, ..., tN) f (t1,… , tn)

Goals⇒ Formulas:
true true
false false
t1 = t2 t1 = t2
p(t1, ..., tN) p(t1,… , tn)
Goal1, ..., GoalN �1 ∧… ∧ �n
(Goal1 ; ... ; GoalN) �1 ∨… ∨ �n
(if C then T else E) (�c ∧ �t) ∨ (¬�c ∧ �e)
some [X] Goal ∃x. �

where � is the formula corresponding to Goal

Figure 3.3: Semantics of Mercury expressions and goals.

and free in Mercury’s mode system.)
A formula that has no free variables is said to be closed; some sources refer to

closed formulas as “sentences”. The universal closure of a formula is that formula
with all of its free variables universally quantified.

3.3 Expressions and goals

One of the building blocks for understanding Mercury’s declarative semantics is
to see how Mercury expressions are mapped to terms, and how Mercury goals are
mapped to formulas. The relationship we want to describe here is the one repre-
sented by the lower left vertical arrow in Figure 1.1 on page 2.

The mappings for expressions and goals are provided in full detail in the refer-
ence manual, but for convenience Figure 3.3 summarizes the most important bits.
In line with our notational convention, � is the formula that corresponds to goals
such as Goal. A subscript may be used in cases where there are multiple goals, so
Goal1 maps to �1, and so on.

Negations are not listed as goals, since in Mercury a negated goal is an abbre-
viation for a conditional goal. Specifically, the following translation takes place at
the level of Mercury syntax.

not G ⇐⇒ (if G then false else true)

It should be easy to see that the resulting formula is equivalent to negation, since
the goal on the right maps to the formula

(� ∧ false) ∨ (¬� ∧ true)

3.4. IMPLICIT QUANTIFICATION 23

which is logically equivalent to ¬�.
Similarly, universal quantifications are not listed as goals. In this guide, the

universal quantifications we encounter will be generated in ways other than from
goals. The reference manual specifies all cases in which goal constructs are actually
just syntactic abbreviations.

The mapping we have given here is not quite the full story, since we will need to
add implicit quantifiers to the formulas, and extend themapping to program clauses.
We will address these points in the next two sections.

3.4 Implicit quantification

The usual rule in mathematics is that free variables in a formula are implicitly uni-
versally quantified across the whole formula.1 This is not quite what we want for
Mercury’s semantics, since in Mercury code there are common cases which require
existential quantification in order to avoid spurious errors. It is convenient for the
programmer, and produces a natural result, if these existential quantifications are
added implicitly before applying the usual mathematical rule.

In first-order code, the most important case is that of variables in a conditional
goal that are used in the condition and possibly also in the then-branch, but not
anywhere else that bindings from the condition could reach during execution. For
a conditional that maps to the formula (�c ∧ �t) ∨ (¬�c ∧ �e), if x̄ is the set of
variables in question then the formula is implicitly quantified as follows.

(∃x̄. �c ∧ �t) ∨ (¬(∃x̄. �c) ∧ �e)

Note that the first quantifier ranges over the then-branch but the second quantifier
does not range over the else-branch. This reflects the fact that variables bound in
the condition can be used in the former but not the latter.

The implicit quantification process is applied after the expansion of syntactic
abbreviations, so an analogous process effectively applies to negations and other
goals that are abbreviations for conditional goals.

3.5 Clauses

To give a semantics to clauses, we can consider a mapping that just replaces :-
with reverse implication. Figure 3.4 shows the effect this has on the different forms
of clauses—the formulas that result are implications in which the body implies the
head, which is the interpretation discussed in Section 2.5. This essentially lines up
with clause soundness, in that if one of these implications is incorrect it will lead
to a wrong answer bug.

1For example, in a mathematical identity such as sin2 � + cos2 � = 1, the equation is meant to be
taken as true for all values of �.

24 CHAPTER 3. FIRST-ORDER PREDICATE CALCULUS

Clauses ⇒ Formulas:
p(t1, ..., tN) :- Body p(t1,… , tn)← �
p(t1, ..., tN) p(t1,… , tn)← true
f(t1, ..., tN) = t :- Body f (t1,… , tn) = t← �
f(t1, ..., tN) = t f (t1,… , tn) = t← true

where � is the formula corresponding to Body, if present

Figure 3.4: Mercury clauses as reverse implicatios.

Two problems still remain with this formulation of clauses. First, the resulting
formulas are not necessarily closed. Wewill see shortly that we require the formulas
that go into our semantics to be closed. Second, while we have made the connection
to clause soundness, we have not yet done so for clause completeness. That will
require looking at all clauses that define a predicate or function, instead of just one
at a time.

Before we continue our discussion of clauses, however, we will first need to
take a closer look at equality as it relates to the predicate calculus. While the topic
is usually taken as basic in logic, there are slightly different approaches and it is
worth looking closely at the choices we have made.

3.6 First-order logic with equality

In our syntax we included equality as one of the logical symbols. We define this as
semantic equality: two terms are equal if and only if they denote the same thing.
Thus, by definition, the relation is reflexive, symmetric, and transitive, as would
be expected. A substitutivity principle also applies, in that if any argument to a
function is replaced by another argument that is equal according to our definition,
then the result is equal. Similarly, if any argument to a predicate is replaced by
another equal argument, then the result is logically equivalent.

Another possible definition of equality, which we do not adopt, is syntactic
equality. This means that two terms are considered equal if they are syntactically
identical, or if they can be made so via a variable substitution. The two definitions
are very similar, and produce the same results in most cases. There are subtle dif-
ferences, however, and these will eventually become relevant when we talk about
semidet functions in Section 6.2, so it important to take note of precisely which
definition we are using.

When the equality relation is defined as part of the logic, as we have done in this
guide, the logic is sometimes called first-order logic with equality. Some authors
take an alternative approach where the equality relation is treated no differently to
other predicate symbols. This alternative approach is sometimes used in order to
define equality in terms of some other relation, for example by saying that two sets
are equal if each is a subset of the other. In typical cases, however, equality is taken

3.7. AXIOMS 25

to be part of the logic, and the term “first-order logic” is usually taken to mean
first-order logic with equality.

We have chosen to include equality as part of the logic since it is simpler to do
so, and we do intend the aforementioned properties to hold. This does not capture
our full intent, however, and we will need to add to our definition in the next section.

3.7 Axioms

3.7.1 What are axioms?

Axioms are closed formulas that are taken to be true without proof, meaning they
may be used as a starting point for proofs of other formulas. We will look more
at proofs in the next chapter. A closed formula that can be proven from a set of
axioms is called a theorem, and the collection of all such closed formulas is known
as a theory. Thus, the axioms form the basis of a particular predicate calculus
theory.

In this section we will show how to generate a set of axioms from the decla-
rations and clauses in a Mercury program. The theory that results will ultimately
determine the declarative semantics of the program. We will make this concept
clearer once we have discussed models, which we will do in Section 3.8.

Note that in some sources on this topic the authors’ aim is to axiomatize the
logic itself—that is, include axioms that define the logical symbols—but we take
the approach of defining the logic symbols directly and just using axioms to define
what is specific to a program. This is because we want to state something using
the logic, rather than explore theorems about the logic. Thus, when we refer to
“axioms” we mean those that are generated from the program, rather than the sort
that define the logic being used.

3.7.2 Equality axioms

Our definition of equality thus far gives us some conditions that imply when two
given terms are equal. It does not, however, say when they are not equal. As it
stands, we are not even able to rule out the case where all terms are equal. To
repair this, we will need to add some axioms relating to equality. Our intent is that
two ground data terms (that is, terms that do not include function calls) should be
equal only if they are syntactically identical.

Note that we are saying only if. In other words, equality of ground data terms
implies that they must be syntactically identical. This is not the same as saying
syntactic identity of ground data terms implies that they must be equal, since the
implication is in the opposite direction. If the implication were this way around we
would be defining equality as syntactic, but, as mentioned in Section 3.6, that is not
the definition of equality we have adopted.

The condition that ground terms are equal only if identical is known as the
Unique Names Assumption. As the name suggests, this is often left implicit, par-

26 CHAPTER 3. FIRST-ORDER PREDICATE CALCULUS

:- type foo ---> a ; b.
:- type bar ---> nil ; cons(foo, bar).

Figure 3.5: Type definitions for the foo and bar types.

¬(a = b) ∀xy.¬(nil = cons(x, y))

∀x1x2y1y2. (cons(x1, y1) = cons(x2, y2))→ (x1 = x2 ∧ y1 = y2)

∀x.¬(x = cons(t1, t2)), if x occurs in t1 or t2

Figure 3.6: Equality axioms for the foo and bar types.

ticularly when discussing logic programming or databases. In other cases, such as
when dealing with ontologies, it can be desirable to have two distinct names denote
the same thing, in which case the assumption is not made. In our case, there are of
course terms containing function calls that are intended to be equal even if they are
not syntactically identical. For example 2 + 2 is equal to 1 + 3 since both sides are
equal to 4, so we do not want this assumption to always apply. We do intend that
this assumption holds for ground data terms, however.

Another assumption we wish to make is that all terms are finite. For an equation
such as x = f (x), where f is a data constructor, the solution if it exists must be the
infinite term:

x = f (f (f (f (…))))

This is not a term that can be written down using our syntax, however, so we wish
to exclude it as a possible solution.

To support these requirements, a number of axioms are generated for each type.
Consider the type definitions in Figure 3.5. The constants are a, b and nil, and
cons∕2 is the only other function symbol. Note that foo and bar are not included,
as these are type constructors not data constructors or declared functions.

The equality axioms for foo and bar are shown in Figure 3.6. The two in the
first row say that ground data terms are not equal unless their principal functors are
equal. We have omitted any axioms that say terms of different types are not equal,
since in general there is a large number of these, and in a type correct program such
axioms will not make any real difference. In a non-typechecked setting, all O(n2)
axioms would be required.

The third axiom says that ground data terms are not equal unless their argu-
ments are equal. In other words, this simply states that cons∕2 denotes an injective
function.

The last line is an axiom schema (that is, an infinite family of axioms), where
there is one axiom for each pair of data terms t1 and t2. This schema is known as the

3.7. AXIOMS 27

occurs check,2 and it states that a variable is never equal to a data term that contains
that variable. Equivalently, a data term never strictly contains itself as a subterm.
This implies that all data terms are finite; for example the formula x = cons(a, x),
which would otherwise describe an infinite term, is always false because x occurs
in the term that it is supposedly equal to.

With the axioms we have defined we can no longer say that ground data terms
that are syntactically different may be equal. For example, the axioms allow us to
infer

¬(cons(a, nil) = cons(b, nil))

since if we assume that cons(a, nil) and cons(b, nil) are equal, then by the third
axiom we have that a = b. This contradicts the first axiom, which means that our
assumption must have been false.

Without the equality axioms there would have been no way to derive this proof.

3.7.3 Clause soundness axioms

In Section 2.5 we gave the clause soundness condition for partial correctness, which
required that each clause in the program must be true in the intended interpretation.
This can be expressed as an axiom in a straightforward way.

Recall from Section 3.5 that a clause for a predicate pwith arity n can bemapped
to a formula ← �, where corresponds to the clause head and takes the form
p(t1,… , tn), for argument terms t1,… , tn, and � is the formula corresponding to
the clause body (or true if the clause is a fact). Similarly for a function f with arity
n, except that takes the form f (t1,… , tn) = tr, where tr is the return expression.

The formula can be made into an axiom in the same waymathematical formulas
usually are, by taking the universal closure as follows:

∀x̄. ← �

where x̄ is the set of free variables that occur in and �.
The resulting formula is known as the clause soundness axiom for the clause.

As suggested above, it expresses the clause soundness condition for the clause, and
it must be true in the intended interpretation. Since it is an implication, the only
way it can be false is if is true and � is false. If this is the case—that is, the
axiom is false in the intended interpretation—then, in line with the discussion in
Section 2.5, the clause is a wrong answer bug.

Observe that, while for predicates the axiom asserts something about ground
atoms for the predicate itself, for functions the axiom asserts something about the
equality relation. Unlike data constructors, we do not generate axioms that say the
function is injective, or that the function returns values that are different from every
other function. The function completion adds new instances of terms being equal,
rather than excluding such instances.

2Or sometimes “occur check”, without the plural.

28 CHAPTER 3. FIRST-ORDER PREDICATE CALCULUS

The axiom also tells us a way to make inferences about the program. We can
choose any way we like of assigning values to the variables x̄, and if we do so in
a way that �, the clause body, is something we have already established to be true,
then we can infer that , the clause head, will also be true. Equivalently, if we want
to know whether or not an instance of is true, it is sufficient to show that � is true
under the same variable assignment.

3.7.4 Combined clause soundness axioms

In the form given in the previous section, the clause soundness axiom is convenient
for reasoning about a program one clause at a time. It is also useful, however, to
be able to reason about the combination of all clauses that make up a predicate or
function definition.

One way to express a combined clause soundness axiom is to directly conjoin
all of the individual axioms, as follows:

∀x̄1. 1 ← �1 ∧… ∧ ∀x̄m. m ← �m

where m is the number of clauses in the definition. This does not provide us with
much additional insight as it stands, since there are still just as many implications
to consider. If, however, the clause heads all have identical arguments, we could
easily combine all the conjuncts into a single implication.

We can make the clause heads take the required form by performing a simple
logical transformation. For a predicate p with arity n, let v1,… , vn be a sequence
of variables that are distinct from any other variables in the clauses. We define the
following formulas:

 ′ ≡ p(v1,… , vn)
�′ ≡ ∃x̄. v1 = t1 ∧… ∧ vn = tn ∧ �

where x̄ is the set of free variables that occur in and �, and t1,… , tn are the
original argument terms. In other words, ′ is with the fresh variables in place
of the argument terms, and �′ is � conjoined with equations between each of the
fresh variables and the corresponding argument terms, and with all variables except
the fresh ones existentially quantified.

Analogous definitions can be given for functions, with the difference being that
we also need a variable, vr, for the function result, and an additional equation to
bind it. In this case we obtain:

 ′ ≡ f (v1,… , vn) = vr
�′ ≡ ∃x̄. v1 = t1 ∧… ∧ vn = tn ∧ vr = tr ∧ �

where x̄ and t1,… , tn are as before, and tr is the return expression for the clause.
Now consider the formula ′ ← �′. If we take the universal closure in the

same way as in the previous section, the result is logically equivalent to the clause

3.7. AXIOMS 29

soundness axiom. Intuitively, moving argument terms into the body via equations
with fresh variables does not change the meaning of a clause. The reason we exis-
tentially quantify variables in the original clause is because we are only interested in
the values of head variables, and because when we combine the clauses, as we will
do in a moment, we do not want variables from different clauses to clash if they
happen to have the same name. Essentially, the existential quantification reflects
that the scope of variables in a clause is just that single clause.

From the collection of clauses in a definition, we obtain ′, which is common
to all the clauses, and which is implied by �′i for the ith clause. The conjunction ofthe formulas is found by taking the disjunction of the antecedents:

 ′ ← �′1 ∨… ∨ �′m

Universally quantifying the free variables, v̄, would give us something equivalent
to the conjunction of all of the clause soundness axioms for the definition.

3.7.5 Clause completeness axioms

Our definition of partial correctness from Section 2.5 requires not just clause sound-
ness but also clause completeness. That is, the set of clauses defining a predicate or
function must, between them, cover every possible ground atom that is true in the
intended interpretation.

The clause completeness axiom, which expresses the clause completeness con-
dition, is the counterpart to the clause soundness axioms. It can be obtained from
the combined clause soundness axiom from the previous section, by changing the
reverse implication into a forward implication prior to universally quantifying.

For a predicate or function defined bym clauses, the clause completeness axiom
is therefore:

∀v̄. ′ → �′1 ∨… ∨ �′m
Like the clause soundness axioms, it must be true in the intended interpretation. In
this case, the only way it can be false is if the left-hand side is true and the right-
hand side is false. In line with the discussion in Section 2.5, if this happens then
the definition contains a missing answer bug.

Intuitively, putting the clauses into a disjunction reflects the fact that execution
can choose any one of the clauses, and using a forward implication means that,
while each clause says what things are true, these are the only things that are true.
That is, every ground atom that is true must be covered by one of the clauses, as we
expect.

We can use the clause completeness axiom to make inferences about the pro-
gram, in much the same way as we can with the clause soundness axiom. The
difference is that it gives us negative information—it allows us to infer that a par-
ticular ground atom must be false, rather than true. This in turn allows us to reason
about whether the negation of a ground atom is true, or about which branch will be
taken by a conditional goal.

30 CHAPTER 3. FIRST-ORDER PREDICATE CALCULUS

3.7.6 Predicate and function completion

In most sources, the clause soundness axioms and the clause compleness axiom are
combined into a single formula. For a given predicate or function, this formula,
which is logiclly equivalent to the conjunction of the axioms, is known as the com-
pletion of the predicate or function.

Since we already have the axioms in the form of implications in one direction
or the other, the conjunction of them is just a bi-implication between the two sides.
In other words, the formula is:

∀v̄. ′ ↔ �′1 ∨… ∨ �′m

where v̄ is the set of fresh variables we introduced.
An example should help to illustrate, and for this we will turn once again to

append/3. The clauses, when mapped to the ← � form, are as follows (variable
names are chosen to fit with our notational convention):

append([], y, y)← true
append([w|x], y, [w|z])← append(x, y, z)

We obtain the clause soundness axioms by universally quantifying:
∀y. append([], y, y)← true
∀wxyz. append([w|x], y, [w|z])← append(x, y, z)

To get the combined formula, we introduce fresh variables v1,… , v3 and make the
following definitions:

 ′ ≡ append(v1, v2, v3)
�′1 ≡ ∃y. v1 = [] ∧ v2 = y ∧ v3 = y
�′2 ≡ ∃wxyz. v1 = [w|x] ∧ v2 = y ∧ v3 = [w|z] ∧ append(x, y, z)

Note that we have omitted true from the conjunctions, since they do not have any
effect. Putting the definitions together we get the following clause completeness
axiom:

∀v1v2v3. append(v1, v2, v3)→
(∃y. v1 = [] ∧ v2 = y ∧ v3 = y) ∨
(∃wxyz. v1 = [w|x] ∧ v2 = y ∧ v3 = [w|y] ∧ append(x, y, z))

The completion of append/3 is the same as the clause completeness axiom, except
it uses a bi-implication:

∀v1v2v3. append(v1, v2, v3)↔
(∃y. v1 = [] ∧ v2 = y ∧ v3 = y) ∨
(∃wxyz. v1 = [w|x] ∧ v2 = y ∧ v3 = [w|z] ∧ append(x, y, z))

3.7. AXIOMS 31

This is logically equivalent to the conjunction of the clause soundness and clause
completeness axioms for append/3.

To illustrate the procedure for function definitions, we will of course look at the
function length/1. We start with the clauses in their ← � form, as before:

length([]) = 0← true
length([x|y]) = 1 + length(y)← true

The clause soundness axioms are therefore:
length([]) = 0← true
∀xy. length([x|y]) = 1 + length(y)← true

No quantifier is required on the first of these, since there are no free variables. To
get the combined formula, we introduce fresh variables v1 and vr, and define:

 ′ ≡ length(v1) = vr
�′1 ≡ v1 = [] ∧ vr = 0
�′2 ≡ ∃xy. v1 = [x|y] ∧ vr = 1 + lengtℎ(y)

Putting these together we get the following clause completeness axiom:
∀v1vr. length(v1) = vr →

(v1 = [] ∧ vr = 0) ∨
(∃xy. v1 = [x|y] ∧ vr = 1 + lengtℎ(y))

As before, the function completion is the same as the clause completeness axiom
with the implication replaced by a bi-implication.

3.7.7 Mode-determinism assertions

Modes and determinisms play a significant role in helping people understand Mer-
cury code. They also play a part in the declarative semantics. For modes that are
det or multi we generate an axiom that says that for every value of each of the
inputs, there exists a solution. For modes that are det or semidet we generate
an axiom that says that for every value of each of the inputs, there is at most one
solution.

For example, consider the following modes for append/3:
:- mode append(in, out, in) is semidet.
:- mode append(out, out, in) is multi.
:- mode append(in, in, out) is det.

These three modes will generate the three axioms shown in Figure 3.7, respectively.
Note that the third axiom, for the det mode, is the conjunction of the axioms that
would apply for the semidet and multi modes.

32 CHAPTER 3. FIRST-ORDER PREDICATE CALCULUS

∀xy1y2z. append(x, y1, z) ∧ append(x, y2, z)→ y1 = y2
∀z.∃xy. append(x, y, z)
∀xy.(∃z. append(x, y, z)) ∧

(∀z1z2. append(x, y, z1) ∧ append(x, y, z2)→ z1 = z2)

Figure 3.7: Mode-determinism assertions for three modes of append/3.

One consequence of these axioms is that if a predicate has a mode where all
arguments are inputs and where the determinism says it cannot fail, then any call to
that predicate is logically equivalent to true. Unless a strict operational semantics
is used, be aware that in most cases the compiler will optimize away such calls. If
that happens then exceptions may not be thrown, trace goals may not be run, etc.

Similar axioms are generated for function modes that cannot fail. The axiom
generated for a function’s default mode states that the function is total—a vacuous
statement in classical logic since function symbols are always interpreted as total
functions. On the other hand, this presents a problem for functions that are semidet
in the forward mode, that is, the mode with all arguments as inputs and the return
value as an output. These denote partial functions, which cannot be directly repre-
sented in classical logic. We will discuss in Section 6.2 how these function modes
are handled.

3.8 Classical semantics

3.8.1 Universes

A universe U is a non-empty set of values representing the domain of discourse.3
The idea is that terms in the syntax correspond to values in U . If a term t corre-
sponds to a value u in a given interpretation, we say that t denotes u, and that u is
the denotation of t. For example, the code in Section 2.6 implementing arbitrary
precision integers as lists of digits could have the set of all integers as its universe.
In this interpretation, each list of digits would denote an integer.

The examples in Section 2.1 made use of Herbrand interpretations. In these the
universe is the Herbrand universe, which is defined as the set of all ground data
terms, and each ground data term simply denotes itself. For first order code the
Herbrand universe can be considered as good as any other, since, given an inter-
pretation in any other universe U , there exists a unique map from the Herbrand
universe to U that ultimately leads to the same result.

3The term “domain” is also sometimes used instead of universe, but this is not quite the same as
the domains that sometimes appear in the denotational semantics of other languages—there is no ⊥
element, for example—so we will avoid using this term.

3.8. CLASSICAL SEMANTICS 33

In the following discussion, for a universe U we will make use of the sets U n

for n ⩾ 0, where U n is defined as the set of n-tuples of elements in U . These sets
represent the possible argument values for predicates and functions of arity n.

3.8.2 Assignments

An assignment over a universe U is a mapping from variables to values in U . In
the following we will use � and � to stand for arbitrary assignments. For a variable
x, the value that it maps to under � is written as �(x).

If �1 and �2 are assignments such that �1(v) = �2(v) for all variables v other
than x, then we say that �1 differs from �2 only at x. Note that it can be the case that
�1(x) does still equal �2(x). We write �{v1 → u1, v2 → u2,…}, or just �{vi → ui},
for the assignment that differs from � only at each of the vi, where it maps to ui.

It’s possible to imagine applying an assignment to formula, such that all of the
free variables in the formula are replaced by the values they take in the assignment.
If such an assignment makes the formula true, then the assignment is thought of as
a solution. In the next two sections we will make this concept precise.

3.8.3 Interpretations

We have used the term “interpretation” a number of times to mean, intuitively, the
way in which we understand the symbols appearing in a formula. For example, we
have said that the symbol ‘+’ can be interpreted as integer addition. The general
idea of an interpretation is that it maps from syntactic elements—the predicate and
function symbols—to some semantic universe.

Formally, an interpretation I over a universe U is a mapping defined on predi-
cate and function symbols, such that:

• If f∕n is a function symbol, then I(f∕n) is a total function U n → U . In other
words, I(f∕n) takes n arguments from U and returns a value from U . For a
constant a, I(a) is just an element of U .

• If p∕n is a predicate symbol, then I(p∕n) is a predicate (that is, a relation)
over U n. That is, I(p∕n) takes n arguments from U and returns either true or
false.

Thus, the function I(f∕n) is the denotation of the function symbol f∕n, and the
predicate I(p∕n) is the denotation of the predicate symbol p∕n.

More generally, we will need to show how an interpretation as defined above
can be extended to a mapping on terms and formulas. Since these may contain
variables, the result will depend on how values are assigned to those variables.

Given an interpretation I and an assignment �, we can extend I to a mapping
I� from terms to elements of U by applying the following rules:

• If x is a variable, then I�(x) maps to �(x).

34 CHAPTER 3. FIRST-ORDER PREDICATE CALCULUS

• If f∕n is a function symbol and t1,… , tn are terms, then I�(f (t1,… , tn))
maps to the function I(f∕n) applied to arguments I�(t1),… , I�(tn). For a
constant a, I�(a) just equals I(a).

Similarly, this increasingly overloaded mapping can be extended to atomic formu-
las. The following rules are applied:

• I�(true) always maps to true.
• I�(false) always maps to false.
• If t1 and t2 are terms, then I�(t1 = t2) maps to true if I�(t1) and I�(t2) map

to the same value in U . Otherwise it maps to false.
• If p∕n is a predicate symbol and t1,… , tn are terms, then I�(p(t1,… , tn))

maps to the predicate I(p∕n) applied to arguments I�(t1),… , I�(tn).
Continuing, the mapping can be extended to compound formulas by applying the
following rules:

• If � is a formula constructed using a logical connective, then I�(�) maps to
a truth value via the usual (classical) truth table for that connective, using the
truth values of I� for each sub-formula.

• If � is of the form ∃x. , then I�(�) maps to true if I�() is true for some
assignment � that differs from � only at x. Otherwise it maps to false.

• If � is of the form ∀x. , then I�(�) maps to true if I�() is true for all
assignments � that differ from � only at x. Otherwise it maps to false.

Finally, observe that if � is a closed formula then I�(�) is always the same regard-
less of the assignment. We can therefore define I(�), without ambiguity, as being
equal to I�(�) where � is an arbitrary assignment.

For example, consider an interpretation I in which append∕3 is the list append
predicate and length∕1 is the list length function. Let � be an assignment such that
�(z) = [1, 2, 3], and let � be the following formula.

∃xy. append(x, y, z) ∧ length(x) = 2

We can evaluate I�(�) as follows. Let � = �{x → [1, 2], y → [3]}. That is, � is
the assignment that differs from � only at x and y, where it takes the values [1, 2]
and [3], respectively. We have that I�(x) maps to [1, 2], therefore I�(length(x)) is
the length of the list [1, 2], which is 2. Thus I�(length(x) = 2) maps to true.

Similarly, I�(append(x, y, z)) maps to true, since the arguments map to [1, 2],
[3] and [1, 2, 3], respectively, and the last of these is the result of appending the first
two. Given this result and the result from the previous paragraph, we can see that
I�(append(x, y, z) ∧ length(x) = 2) maps to true, via the truth table for ‘∧’.

3.8. CLASSICAL SEMANTICS 35

Finally, I�(�) maps to true because � is an assignment that differs from � only
at x and y, which satisfies our rule for the existential quantifier.

Had we used an assignment �′ with �′(z) = [1], then the append operation
would have been false under the assignment �′ = �′{x → [1, 2], y → [3]}, since
[1, 2] and [3] do not append to form [1]. Furthermore, no such assignment �′
would be able to make the interpretation of the append operation true, and still
have I�′(length(x)) being true. As such, I�′(�) would have evaluated to false.

3.8.4 Models

An interpretation can be thought of as one individual programmer’s understanding
of how a program works. If the programmer has an accurate picture in their head
of the observable behaviour—the inputs and outputs—then their interpretation can
be said to be a model.

Formally, let I be an interpretation over the universeU . We say that I is amodel
of a set of axioms if each of the axioms evaluates to true in that interpretation (recall
that axioms are closed formulas, so we do not need to specify an assignment). If I
is a model of the axioms generated by a program, then we say that I is a model of
the program. Customarily, the variableM is used rather than I when discussing an
interpretation that is a model.

We are now in a position to give the following.
Definition 2 (Declarative semantics). The declarative semantics of a Mercury pro-
gram is the collection of models of that program.

In other words, the declarative semantics is essentially all the possible ways of think-
ing about the program which accurately reflect how the program behaves.

Considering once again the arbitrary precision integers example that we saw
in Section 2.6, one programmer might interpret the digit lists as integers directly.
Another programmer might interpret them as lists of integers that will produce the
actual integers oncce a particular function is applied. As long as their individual
interpretations as a whole accurately reflect the program, then both programmers
stand in equally good positions from which to make valid arguments about the pro-
gram. Our definition of the declarative semantics as a set of models reflects this
fact.

If there exists any model at all, then there are an infinite number of possible
models. However, we generally do not have to consider all models as it is possible to
get the same results by considering only a particular set of interpretations. For first-
order code, it is sufficient to only consider models that are Herbrand interpretations.

Even so, there can be multiple Herbrand interpretations that are models of a
program. For example, consider the program p :- p. The completion of this
program is p ↔ p, which is a tautology. This means that it is true in every inter-
pretation, specifically, p could be assigned the value true or the value false, but in
either case the axiom would hold so both of these interpretations are models.

36 CHAPTER 3. FIRST-ORDER PREDICATE CALCULUS

More concerning is the program p :- not p. In this case the completion is
p ↔ ¬p, which is a contradiction. This means that it is false in every interpreta-
tion, which means that there are no models. Effectively, the behaviour of the entire
program is undefined, at least in the classical semantics. This can be regarded as a
moot point, however, since execution of a program that calls such a predicate would
not terminate. Nonetheless, it motivates the following definition.
Definition 3 (Consistency). A theory is consistent if it contains no contradictions.
That is, there is no formula � such that both � and ¬� are contained in the theory.

If there is at least one model of a theory then there cannot be any contradictions, so
by this definition the theory must be consistent.

In the remainder of this guide we will assume we are working with a program
whose axioms we denote by Γ. We assume that there is at least one model of Γ, so
the program is consistent, We will say “model” to mean a model of Γ. With that in
mind we give the following definitions.
Definition 4 (Satisfaction). Let � be a formula. If M is a model and � is an as-
signment such thatM�(�) is true, we say thatM satisfies � under �, and that � is
true inM under �. If � is closed, we additionally say thatM satisfies �, and that
� is true in M . If there exists any model that satisfies � under some assignment,
we say that � is satisfiable.
Definition 5 (Validity). Let � be a formula and � an assignment. We say that � is
valid under �, written ‘Γ, � ⊧ �’, if every model satisfies � under �. If this holds
for every possible assignment, in particular if � is closed, we additionally say that
� is valid, and that � is a logical consequence of Γ. This is written as Γ ⊧ �.
Definition 6 (Unsatisfiability). Let � be a formula and � an assignment. We say
that � is unsatisfiable under � if there is no modelM that satisfies � under �. If this
holds for every possible assignment, in particular if � is closed, we additionally say
that � is unsatisfiable.

Returning to the definition of solution that we gave earlier, we can say that an as-
signment � is a solution to a formula � if and only if Γ, � ⊧ �. That is, � is a
solution for � if every model satisfies � under �.

With the above definitions, no formula can be both valid and unsatisfiable. Fur-
thermore, if a formula is valid then its negation is unsatisfiable, and vice-versa. Not
all formulas are one or the other, however: if a formula is true in some models and
false in others, then it is neither valid nor unsatisfiable. For example, consider again
the program p :- p. Because there is a model in which p is true and another model
in which p is false, the formula p is satisfiable but not valid. A formula like this that
is neither valid nor unsatisfiable is said to be contingent.

A point about the ⊧ notation is worth underlining. We have used this symbol to
denote the validity relation between sets of axioms, Γ, and closed formulas, �, and
the “valid under” relation between sets of axioms, assignments, and open formulas.

3.9. EXAMPLE 37

∀y. append([], y, y)← true
∀wxyz. append([w|x], y, [w|z])← append(x, y, z)

Figure 3.8: Clause soundness axioms for append/3.

This symbol is commonly overloaded, in other ways, too. Some authors use it to
denote the satisfaction relation between models and closed formulas, or between
models, assignments, and open formulas. Other authors use it to denote the mod-
elling relationship between interpretations and sets of axioms. That is, statements
in the following forms may appear:

M ⊧ � M, � ⊧ � M ⊧ Γ

These mean, respectively, thatM satisfies �, thatM satisfies � under �, and that
M is a model of the set of axioms, Γ.

We will only need to use the forms given in our definition of validity, but the
reader should be aware that the other forms may be used in other sources.

3.9 Example

Now that we have defined our semantics and specified what axioms generate a pro-
gram’s theory, how do we actually come up with a theorem? Theorems require
proofs, so in this section we will give a couple of ad hoc arguments to try to prove
that a formula is true.

Consider the formula append([1], [2], [1, 2]). We already know it is true given
that append/3 is interpreted as list concatenation, but assume that we only know
how it is defined, and not its interpretation. Can we prove it is true using just the
axioms that are generated?

For convenience, the clause soundness axioms for append/3 from Section 3.7.6
are repeated in Figure 3.8.

First attempt

One approach to proving our formula is to try to determine directly which ground
atoms are contained in some arbitrary Herbrand model of the program, which we
will call H . If the formula we are interested in is contained in the model, then it
must be true.

Looking at the axiom for the first clause, we can see that if we assign the value
[2] to y, then the formula becomes:

append([], [2], [2])← true

38 CHAPTER 3. FIRST-ORDER PREDICATE CALCULUS

From this we immediately get that append([], [2], [2]) ∈ H . We are allowed to
choose, as we did, any value we like for y, since y is universally quantified—the
axiom is applicable to all possible choices.

Now consider the axiom for the second clause. If we assign the values [], [2]
and [2] to the variables x, y and z, respectively, then the right hand side becomes
append([], [2], [2]), which we just established is in H . If we then assign to w the
value 1, the formula becomes:

append([1], [2], [1, 2])← append([], [2], [2])

Thus we get that append([1], [2], [1, 2]) ∈ H , which completes our proof.
Our attempt at proving a formula has been successful, but there are a lot of ways

to go about building a proof, and the proof we have arrived at has a drawback. It
starts by proving a small fact via the first clause, then builds a larger fact via the
second clause. Such a proof is known as a “bottom-up” proof. This is an interesting
way of reasoning, and in fact it reflects, to an extent, how deductive databases go
about answering queries. but it does not reflect how Mercury programs are exe-
cuted.

Mercury execution starts with a high level goal, and reduces it down to smaller
and smaller parts until each part can be solved directly using a fact clause. This style
of proof is known as “top-down”, in contrast to the bottom-up proof above. We will
make a second attempt at proving our formula, this time using a top-down approach.
While this will not completely describe how execution proceeds, it should help
provide some intuition, and serve to motivate the operational semantics that will be
the subject of the next chapter.

Second attempt

For our second attempt we will try a different strategy. We will start by assuming
that the formulawewish to prove, append([1], [2], [1, 2]), is false. From that wewill
try derive a contradiction, which would show our assumption to be false, and thus
prove that the formula is true. In other words, this will be a proof-by-contradiction.
We refer again to the axioms in Figure 3.8.

Our approach will be to choose one of the axioms and try to match it to our
formula by setting the arguments appropriately. Since the axioms are reverse im-
plications for which we have assumed the left-hand side is false, we can infer that
the right-hand side must also be false. By performing this inference a number of
times in sequence we hope to reach a contradiction, that is, where the right-hand
side is in fact true. We might fail to find such a contradiction, however. If we in-
stead reach a tautology, it means we have failed to find the required contradiction.
If we want to keep searching, we will need to go back to an earlier choice of axiom
that we made, and choose the other axiom instead.

The predicate call we are interested in has argument values [1], [2] and [1, 2].
If we choose the axiom for the first clause, we find that there is no way to assign a

3.10. PHILOSOPHICAL REMARKS 39

value to y such we can match the argument values, because the first argument will
always be [].

We therefore choose the axiom for the second clause. By assigning the values
1, [], [2] and [2] to w, x, y and z, respectively, we get:

append([1], [2], [1, 2]) ← append([], [2], [2])

We have assumed the formula on the left-side side to be false, so the formula on the
right-hand side must also be false.

Trying the first axiom on this new formula, we can assign the value [2] to y to
obtain:

append([], [2], [2])← true

Again, the left-hand side is false so the right-hand side must also be false, but this is
a contradiction because the right-hand side is true. We can therefore conclude that
our original assumption must have been false. Thus append([1], [2], [1, 2]) ∈ H ,
which completes our proof.

This style of proof more closely reflects how programs are executed. It is still
missing one important thing, however, which is that there were no variables in the
formulawe proved. Programs in general have output variables which become bound
in the course of execution, so our proof technique would need to take account of
that. We also want to be able to perform the inferences in a way that is less ad hoc.
That, ultimately, is the aim of the operational semantics.

We will cover the operational semantics in detail in the next chapter. Before
that, however, we will make some brief philosophical remarks regarding classical
logic.

3.10 Philosophical remarks

The semantics we have presented is classical. It is possible this will leave the reader
with the impression that Mercury is for classicists and Mercury programmers must
therefore believe that classical logic is the One True Logic. This impression would
not be accurate, as a lot of consideration has gone into understanding the benefits
and drawbacks of classical logic, and likewise in understanding what other logics
have to offer.

The motivation for the focus on classical logic is straightforward: it provides an
excellent trade-off between ease of reasoning and ability to observe a broad class
of bugs. Its use does not, of course, preclude the addtional use of non-classical
logic. In Chapter 7 we give a non-classical meaning to the logical connectives that
enables more realistic reasoning about programs and their correctness with respect
to a specification. As such, it demonstrates the usefulness of “logical pluralism” as
a philosophy for reasoning about computer programs.

The underlying purpose of logic is to characterize how we think, not to tell us
how to think. We humans have the innate ability to judge between a good argument

40 CHAPTER 3. FIRST-ORDER PREDICATE CALCULUS

and a bad argument, and the best logic in a given situation is the one that most
accurately reflects the way in which we exercise this ability.

Chapter 4

Operational semantics

4.1 Overview

In Chapter 3 we presented the declarative semantics of Mercury, and showed how
it is possible to use the semantics to prove theorems about the program, and in par-
ticular about the solutions to formulas. The deductive system we used to construct
these proofs, although its rules of inference were only hinted at informally, was
essentially the standard one used with the predicate calculus.

The operational semantics of Mercury is a deductive system that, like the stan-
dard one, can be used to generate theorems. Unlike the standard one, it is based
around a single rule of inference known as SLD resolution. This rule is able to give
a top-down computational interpretation to a program, by which we mean that it
defines the sequence of steps by which computation proceeds.

Generally, computation starts with a goal known as the query, and produces
zero or more answers in the form of substitutions. We start this chapter by describ-
ing queries, substitutions, and unification, which are the key building blocks of the
operational semantics.

We then introduce the SLD resolution inference rule, and show how SLD trees
are defined. These give the operational semantics of “definite” logic programs,
which are programs in which each clause body is a conjunction of atoms (that is,
not using disjunction, negation, or if-then-else).

Some important results in the meta-theory, known as soundness and complete-
ness, will then be covered. These meta-theorems demonstrate that the declarative
semantics and the operational semantics give non-conflicting views of the program
behaviour.

After this we extend our semantics to deal with Mercury goals in general. We
introduce the negation-as-failure rule used in SLDNF resolution, which defines the
behaviour of if-then-elses and negated goals. We provide a set of structural rules to
deal with other Mercury goals.

Finally, we will briefly explain the origin of the phrase “SLD resolution”, which
may be something that has attracted the reader’s curiosity.

41

42 CHAPTER 4. OPERATIONAL SEMANTICS

4.2 Queries

Queries are (usually non-ground) goals that represent the starting point of a com-
putation. Executing the query involves finding substitutions, which we refer to as
answers, for which each ground instance corresponds to an assignment that makes
the goal valid. A query essentially asks, “What are the assignments of the free
variables for which this goal is valid?”

The initial query for the execution of a Mercury program is always a single call
to main/2. It will, however, also be useful to consider queries that represent sub-
computations within the program. For definite logic programs, such queries can be
written in the following form:

:- Goal1, Goal2, ..., GoalN.

where each GoalI is an atomic goal, and commas are read as conjunction. If the
conjunction of goals is in solved form, as defined in the next section, then no further
computation is required: the corresponding substitution is the only answer.

The query is interpreted as the formula:1

∀x̄. false ← �1 ∧… ∧ �n

where �1,… , �n are the formulas corresponding to the goals, and x̄ is the set of
free variables occurring in the goals. Effectively, the query is interpreted as the
negation of the goal, and the aim is to find all substitutions that make this negation
false. Hence this is an attempt at proof by contradiction, similar to our proof from
Section 3.9. That is, a proof, if found, is a refutation of the query, which in turn
implies that the substitution is an answer to the goal.

Proof by contradiction may seem a roundabout way of doing things, and indeed
some authors define the execution procedure directly to avoid this, but we define
things this way because the resulting proof steps, whenwritten out, have the premise
on top and the conclusion underneath. This is the conventional way of writing
proofs, but the choice ultimately makes no difference to the outcome.

4.3 Substitutions

A substitution is a partial mapping from variables to data terms, such that no vari-
able that maps to a term occurs in any of the terms in the mapping. That is, variables
on the left-hand side do not occur on the right-hand side. We write substitutions in
the form:

{V1 = t1, ..., VN = tN}

1The origin of this notation, as with many other things, comes from theorem provers. The list of
goals on the right-hand side of ‘:-’ is taken as a conjunction, as we have done. The list of goals of
the left-hand side is taken as a disjunction, and since in our case the list is empty, the disjunction is
equivalent to false. As usual, free variables are implicitly universally quantified.

4.4. UNIFICATION 43

where V1 to VN are variables, and t1 to tN are arbitrary data terms (possibly vari-
ables themselves) that the variables respectively map to.

A substitution applied to an expression t yields an expression which is the same
as t, but with each occurrence of a variable that maps to a term in the substitution
replaced with the mapped term. A substitution can be applied to a goal in a similar
way, by replacing each free occurrence of a variable with the term it maps to, if any.

Observe that a substitution without the braces is just a goal consisting of a con-
junction of unifications. Indeed, substitutions can be thought of as goals that are in
“solved form”, in that applying them once to an expression or goal is straightforward
and is sufficient to produce the entire effect (that is, substitutions are idempotent).
The aim of computation is essentially to put goals into their solved forms.

Substitutions represent the state of computation: they record all we know about
the variables so far. In Mercury, the instantiatedness of a set of variables describes
the possible substitutions at that point in the code, which tells us something about
what form the substitution must take. If the inst of a variable is free then the
variable is not mapped to anything. If it is bound then the variable is mapped to
a term whose principal functor is one of the ones listed, and whose arguments are
described by the corresponding argument insts. If it is ground then the variable
is mapped to a term that contains no variables.

While substitutions bear a resemblance to the assignments that we defined in
Section 3.8.2, note that assignments map variables to elements of the universe. That
is, assignments are semantic in nature, whereas substitutions map variables to data
terms, and are thus syntactic.

4.4 Unification

Given two possibly non-ground data terms, unification is the process of finding a
substitution on variables such that applying it to either term yields the same result.
A substitution that makes two terms identical in this way is called a unifier of those
terms.

Terms do not always have a unifier, in which case we say that the terms do not
unify. If they do unify, however, there is always a “most general unifier” that does
the least amount of binding possible. There may bemore than onemost general uni-
fier, but they will be unique up to renaming of variables. The unification algorithm
aims to find one such unifier.

For example, consider the terms f(X,g(X)) and f(h(Y),Z), and the substitu-
tion:

{X = h(Y), Z = g(h(Y))}

Applying this substitution to either of the terms yields the same result, namely
f(h(Y),g(h(Y))), so this substitution is a unifier. It is not difficult to see that
it is a most general unifier.

44 CHAPTER 4. OPERATIONAL SEMANTICS

The unification algorithm can be seen as a procedure for putting equations into
solved form, that is, in the form of a substitution that is a most general unifier.
Taking the above example, if the query is:

:- f(X,g(X)) = f(h(Y),Z).

then in solved form this would be:
:- X = h(Y), Z = g(h(Y)).

which corresponds to the substitution we had above.
In general, consider a query that is a set of equations as follows, where s1 to

sN, and t1 to tN, are arbitrary data terms (possibly variables):
:- s1 = t1, s2 = t2, ..., sN = tN.

Initially, all of the goals are marked as unsolved. We first select a goal G that is not
marked as solved. If there is no such goal then the algorithm terminates. We then
apply one of the following rules, depending on the form G takes.

• If G is X = X for some variable X, remove it.
• If G is f(s1, ..., sN) = f(t1, ..., tN) for data constructor f/N, re-

move it and replace it with the set of equations s1 = t1, ..., sN = tN.
• If G is f(s1, ..., sN) = g(t1, ..., tM) for distinct data constructors
f/N and g/M, the algorithm fails.

• If G is t = X for some non-variable data term t and variable X, remove it and
replace it with X = t.

• If G is X = t where t is a data term not containing X, then replace all free
occurrences of X elsewhere in the query by t. If X occurred freely in the
original query then keep G and mark it as solved, otherwise discard it.

• If G is X = t where t is a non-variable data term and X occurs in t, the
algorithm fails.

After applying the appropriate rule we go back and select another unsolved goal,
or else terminate if there are none.

If the algorithm terminates without failing then the query will be in solved form,
and the corresponding substitution will be a most general unifier of the equations.
If the algorithm fails then the equations do not have a unifier. Note that the order
in which goals are selected does not matter, since the results will be equivalent
irrespective of the selection order.

A single unification can be solved as a special case of the above algorithm, by
starting with the set containing just that equation. For our above example, three
applications of the rules gives us the equation in solved form:

4.5. SLD RESOLUTION 45

f(X,g(X)) = f(h(Y),Z)
⇓

X = h(Y), g(X) = Z
⇓

X = h(Y), Z = g(X)
⇓

X = h(Y), Z = g(h(Y))

Had this query included the goal Y = Z, the outcome would have been different, as
we would eventually reach the equation Z = g(h(Z)) and thus we would fail due
to the last rule, which is the occurs check.

This algorithm described here is originally due to Martelli and Montanari. We
can extend the algorithm to also allow for function calls in the goals, not just data
terms as we currently do, however we will need to handle function calls differently
in order to implement semantic rather than syntactic equality. We will see how to
do that as part of the resolution algorithm, in the next section.

4.5 SLD Resolution

Deductive systems often use inference rules that follow a pattern of one introduction
and one elimination rule for each logical symbol. This provides an elegant under-
standing of how the logic works, but for logic programming this view is not particu-
larly useful since these rules do not provide any computational interpretation—they
do not say how a program should be executed. Instead, at least for logic programs
not using negation, there is one main inference rule. This rule is known as SLD
resolution.2

Proofs start with a query in the form:
:- Goal1, ..., GoalN.

Each of the goals is atomic, meaning it is either a unification, a predicate call, or a
logical constant. We assume for now that the program clauses are definite, so the
body of each clause consists of a (possibly empty) conjunction of atomic goals. The
more general case of Mercury clauses will be addressed in Section 4.9.

As discussed in Section 4.2, a query represents an assertion that the conjunction
of goals is false for all variable assignments. The aim of SLD resolution is to derive
a contradiction, thereby refuting the assertion. This occurs when the goals are in
solved form, or there are no more goals left in the query. If such a contradiction is
reached then the substitution corresponding to the solved goal is an answer.

The answer represents an assignment (or, if free variables remain, a set of as-
signments) for which the assertion is refuted, and therefore for which the conjunc-

2Historically, resolution was used as an inference technique in automated theorem provers. SLD
resolution, which is an instance of this technique, was found to have a useful computational interpre-
tation. It is from this that logic programming was developed.

46 CHAPTER 4. OPERATIONAL SEMANTICS

tion of goals is valid. We refer to a derivation that results in a contradiction, and
the substitution that it produces, as a success. We refer to the assignment or set of
assignments that the answer represents as a solution.

Conversely, if at any stage the unification procedure fails then the derivation
has reached a tautology. This means that we have failed to find a refutation, and we
refer to this case as failure.

The third possibility is that neither a contradiction nor a tautology is found. We
refer to this case as nontermination, but note that, aside from running forever, this
also includes cases of abnormal termination such as throwing an exception.

The SLD resolution algorithm is parameterized by a selection function that re-
turns a selected goal based on the current and previous queries. As before we will
mark some goals as solved as we go, and require the selection function to choose
a goal that is as yet unsolved. If the selected goal contains any function calls then
the selection function also returns a selected function call from the goal.

The algorithm proceeds as follows. If there are no unsolved goals, the derivation
succeeds. Otherwise, select an unsolved goal G using the selection function. Apply
one of the following rules, depending on the form G takes.

• If G is true, delete it.
• If G is false, the derivation fails.
• If G is a unification between two data terms, handle it according to the rules

given in the last section for the unification algorithm. If that fails then the
derivation fails.

• If G is an atomic goal that contains a function call, and the selected function
call in that goal is f(t1,...,tN) for a function f/N, then choose a clause
whose head takes the form f(s1,...,sN) = sR. Rename variables as nec-
essary so they do not conflict with any variables already present in the query.
Remove the selected function call and replace it with sR, and to the query
add the unifications t1 = s1, ..., tN = sN, followed by the clause body
if present.

• If G is a predicate call p(t1,...,tN) for a predicate p/N, then choose a
clause whose head takes the form p(s1,...,sN). Rename variables as nec-
essary so they do not conflict with any variables already present in the query.
Remove the selected predicate call and replace it with the unifications t1 =
s1, ..., tN = sN, followed by the clause body if present.

After applying the appropriate rule we go back and select another unsolved goal. If
there are no such goals, the derivation succeeds.

The rules we have given are nondeterministic, in the sense that the order in
which goals and clauses are selected is not fully specified. For the unification rules
the order does not matter as the procedure will always lead to the same result, re-
gardless of the choices made. The SLD resolution rules, on the other hand, require
a bit more attention.

4.5. SLD RESOLUTION 47

When it comes to selecting a goal, Mercury’s selection function chooses a goal
or function call whose initial insts are satisfied by the argument terms. In the strict
sequential semantics, the leftmost goal that satisfies this condition is selected. In
the strict commutative semantics the selected goal need not be the leftmost one, but
if there are any goals that were expanded from the body of a clause then one of the
most recently expanded goals is selected.

For predicate and function calls, the algorithm also requires us to choose a
clause from the program. In contrast to goal selection, where a single choice is
committed to without going back and trying alternatives, clause selection results in
a “choice point” being created. After exploring the derivations that follow from one
choice, if more solutions are sought then execution backtracks to the most recent
choice point and makes a different choice. If no such choice point exists, that is, if
all choices have previously been explored, then execution of the query fails.

In Mercury, the nondet determinism category refers to the second form of non-
determinism above, namely that relating to clause selection. Users do not need to
declare the first form, as the compiler is responsible for making the choices in that
regard.

The collection of possible derivations arising from a query can be arranged
into a tree, where derivations branch off at each choice point in accordance with
execution of the query. A tree of this form is known as an SLD tree.

To illustrate the algorithm, consider the call append([a,b],[c],Xs). For
convenience we repeat the clauses for append/3 here:

append([], Bs, Bs).
append([V | As], Bs, [V | Cs]) :-

append(As, Bs, Cs).

The initial query is as follows:
:- append([a,b], [c], Xs).

If the first clause were chosen we would get the unification [a,b] = [], among
others, but this unification would fail. We therefore need to choose the second
clause.

We rename this clause’s variables by adding a numerical suffix, and replace the
call with argument unifications and the renamed clause body. This results in the
following query:

:- [a,b] = [V1 | As1], [c] = Bs1, Xs = [V1 | Cs1],
append(As1, Bs1, Cs1).

After selecting each of the unifications and applying the unification rules, we get:
:- Xs = [a | Cs1], append([b], [c], Cs1).

If the first clause were chosen we would get the unification [b] = [], which would
fail, so again we choose the second clause. We rename the clause variables with a
different suffix and replace the call as before, which results in:

48 CHAPTER 4. OPERATIONAL SEMANTICS

:- Xs = [a | Cs1], [b] = [V2 | As2], [c] = Bs2,
Cs1 = [V2 | Cs2], append(As2, Bs2, Cs2).

Running unification rules again, we get:
:- Xs = [a,b | Cs2], append([], [c], Cs2).

This time we can choose the first clause, resulting in:
:- Xs = [a,b | Cs2], [] = [], [c] = Bs3, Cs2 = Bs3.

Running unification rules one last time we end up with:
:- Xs = [a,b,c].

which is the answer to the query.
Substitutions do not necessarily end up ground, as happened in this case, but

in typical Mercury usage the modes will require that they do. In any case, for
each ground instance of the answer, the derivation proves that the query formula is
valid under the assignment corresponding to that ground instance. This motivates
a definition to end the section.
Definition 7 (Provability). Let � be a formula. We say that � is provable, written
Γ ⊢ �, if there is some goal G with a successful derivation giving substitution S,
such that � is the formula corresponding to G with S applied to it. Furthermore, if
Γ ⊢ � then Γ ⊢ ∀x. � for any variable x.

4.6 Soundness and completeness

In the course of this chapter and the previous one a number of concepts have been
introduced, some of which are essentially declarative in nature, others operational.
In many cases the concepts come in pairs, one corresponding to the declarative view
and the other to the operational view, which nonetheless reflect the same underlying
concept.

Figure 4.1 shows some of the the correspondences between declarative concepts
and their operational counterparts. Of particular importance is that between validity
and provability, as that provides the basis for many of the other equivalences. The
relationship between them is expressed by the following theorems.
Theorem 2 (Soundness). Let � be any formula. If Γ ⊢ � then Γ ⊧ �. That is,
provability implies validity.

Theorem 3 (Completeness). Let � be any formula. If Γ ⊧ � then Γ ⊢ �. That is,
validity implies provability.

4.7. OPERATIONAL INCOMPLETENESS 49

Declarative concept Operational concept

values ←→ ground data terms
equality ←→ unification

assignment ←→ substitution
solution ←→ answer

truth ←→ success
falsity ←→ failure

existence of model ←→ consistency
validity ←→ provability

Figure 4.1: Correspondences between declarative and operational concepts.

Between them, these theorems state that there is an equivalence between truth as
expressed in the model, and truth as expressed by the program execution.

A deductive system like this, for which soundness and completeness holds, is
sometimes referred to as a “full logic”. In this context the declarative view is re-
ferred to as model-theoretic, while the operational view is referred to as proof-
theoretic. The equivalence between the model-theoretic and proof-theoretic, as es-
tablished by the theorems, can be expressed by the somewhat cute formula ⊧ ≡ ⊢.

Of practical significance to programmers is that they can freely switch between
thinking declaratively and thinking operationally. As we have seen, the former can
allow for much simpler reasoning about programs than the latter. But, as we have
also seen, this can only go as far as reasoning about partial correctness—there will
always be situations where the programmer needs to reason operationally in order to
verify correctness. Being able to freely switch between the twomeans programmers
can use the declarative semantics most of the time, but can temporarily switch to
the operational semantics when that is required.

It is, therefore, this correspondence between declarative and operational notions
that justifies the use of the dual semantics of declarative programming, above and
beyond the operational semantics that programming languages in general provide.
In other words, we are justified in having two horizontal arrows in the lower part of
Figure 1.1 on page 2, instead of one.

4.7 Operational incompleteness

At first glance, the Completeness theorem appears to put us in a kind of program-
mer’s utopia. All that is required, it seems, is for the programmer to specify the
logical outcomes they want, and the deductive system will know what to do.

Unfortunately, and perhaps unsurprisingly, this is not the case. A careful exam-
ination of the Completeness theorem shows that what the theorem states is that, if a
formula is valid, there exists some proof that can be reached via application of the

50 CHAPTER 4. OPERATIONAL SEMANTICS

p :- p.
p.

q :- q, false.

Figure 4.2: Two predicate definitions that illustrate issues with completeness.

resolution rule. The resolution rule, however, is not deterministic, and while execu-
tion nominally involves making all possible clause selection choices eventually, the
compiler still has to commit to a particular clause ordering, as well as needing to
commit to a particular goal selection at each stage. If the wrong choices are made,
then a nonterminating derivation may be explored when there is in fact a successful
or failed branch that would have been reached with different choices.

The code in Figure 4.2 illustrates this point. The predicate p/0 has two clauses,
the first of which immediately loops. If clause selection chooses this clause first
for every call then the program loops indefinitely without succeeding. The second
clause, however, proves that p is valid. As required by the Completeness theo-
rem, the proof of this validity does exist—execution needs only to select the second
clause at some stage—but with the above clause selection this proof will never be
reached.

Similarly, the predicate q/0 has a single clause whose body is comprised of
two conjuncts. The first conjunct immediately loops, so if goal selection chooses
this goal first for every call then the program loops indefinitely without failing. The
second conjunct proves that q is unsatisfiable, and similarly to the previous example
the proof would have been found if the second conjunct was selected at some stage.

For the purposes of programming, this situation is effectively a form of incom-
pleteness, despite the theorem that says otherwise. This is why the Mercury Lan-
guage Reference Manual talks about implementations being “at least as complete
as” the strict commutative semantics. The term “complete” here refers to the form
of effective completeness discussed in this section, rather than that discussed in
Section 4.6.

The concept of completeness is used in many ways in mathematics. Indeed,
in Section 2.5 we referred to clause completeness, which is another distinct usage
of the word. It is thus helpful, in the context of logic programming, to explicitly
refer to the effective form of completeness discussed in this section as operational
completeness. The reader should be aware, however, that other authors commonly
use the terms unqualified, which may cause confusion in some cases.

4.8 Negation-as-failure

So far we have been discussing definite logic programs, that is, programs without
negation. This means programs without conditionals either, since they use a form
of negation. In fact conditionals are more fundamental in Mercury, as ‘not G’ is a
shorthand for ‘(if G then false else true)’.

In the operational semantics, the rule for implementing negation is known as

4.9. STRUCTURAL RULES 51

negation-as-failure. The principle is easy to understand: if a goal succeeds then
the negation of that goal should fail, and similarly, if a goal fails then the negation
of that goal should succeed. We can implement negation-as-failure by adding an
extra rule to the SLD rules from Section 4.5; such a system is known as SLDNF
resolution.

Assuming that G is the selected goal, the additional rule for negation-as-failure
is as follows:

• If G is a conditional goal of the form (if GC then GT else GE), then
execute GC as a new query. If the query succeeds with a substitution S, replace
G with the result of applying S to GT. If the query fails without having pro-
duced a solution, that is, if all derivations have failed even after exhausting
all possible choices, replace G with GE.

Note that if the condition succeeds, it may leave choice points behind. These will
lead to alternative substitutions being applied to GT, leading to different derivations.

It is possible to extend the Soundness theorem to negation-as-failure if and only
if the condition of the if-then-else does not cause any non-local variables to become
instantiated. That is, resolving the condition should not lead to any variables that
occur outside of the condition or then-branch to appear on the left hand side of an
equation in the substitution. From the soundness of negation-as-failure, combined
with our original Completeness theorem, We can also extend the Completeness
theorem to programs with negation.

The requirement to ensure no non-local variables become instantiated can be
challenging to verifymanually. Fortunately, Mercury’smode system tracks changes
to variable instantiation, so the compiler is able to perform the check at compile time
without manual assistance.

4.9 Structural rules

We are now in a position to give rules that cover Mercury’s other compound goals.
Assuming that G is the selected goal, the additional rules are:

• If G is a disjunction, choose one of the disjuncts and replace Gwith the chosen
disjunct. As with clause selection, a choice point is created so that execution
may backtrack to the remaining disjuncts.

• If G is an explicit existential quantification, the quantified variables are re-
named apart in the goal so that they do not conflict with any variables already
in the query. The existentially quantified goal is then removed and replaced
with the renamed goal.

• If G is defined as an abbreviation for another goal, it is removed and replaced
with that other goal. Note that this rule is essentially applied at compile-time,
since the replacement occurs as part of desugaring.

52 CHAPTER 4. OPERATIONAL SEMANTICS

• If G is a purity or determinism cast, it is treated as if the cast was not present
and executed in the same way as other goals.

• If G is a trace goal, the trace condition is evaluated (at compile-time or run-
time, or both). If it is true then G is replaced by the goal with the trace con-
dition, otherwise G is removed. If an I/O state is passed to the trace goal then
the appropriate substitutions are made.

• If G is an event goal, it is removed. Doing so triggers a user-defined debug
event that may be seen in mdb, the Mercury debugger.

4.10 What does SLD stand for?

The readermay be curious as towhat the acronym “SLD” in SLD resolution actually
means. Here is an explanation based on what we have covered in this chapter.

“S” stands for Selection function. The resolution procedure is parameterized
by a selection function that dictates which goal to resolve next.

“L” stands for Linear. For each step in SLD resolution, a new query is generated
from the previous one only, without needing to refer to other computations. As such,
the proof tree consists of a single branch. This is referred to as a linear proof.

“D” stands for definite clauses. SLD resolution applies to logic programs con-
sisting of definite clauses.

The full resolution rule is given the acronym SLDNF, where the “NF” stands
for negation-as-failure. In the presence of negation the proofs are no longer linear,
since they include sub-computations for negated goals. Also, obviously, the clauses
are no longer definite. So perhaps SLDNF is a bit of a misnomer and only really
makes sense in historical context, but nonetheless the name has stuck.

Chapter 5

The execution algorithm

5.1 Run-time unification

The abstract unification algorithm given in the previous chapter provides an overall
view of the steps involved in solving unifications. Since Mercury code is compiled,
however, many of these steps are able to be performed at compile-time and are thus
not necessarily a major concern of the programmer.

In this section we describe the unification steps that are performed at run-time,
which can be thought of as the residual steps left over after the compiler has done
as much of the work as possible. This will allow programmers to get a better under-
standing of what kind of processor instructions will be needed, and how memory
will be allocated and accessed.

The residual steps correspond to primitive unifications involving at most one
function symbol, and which take the form Y = X or Y = f(X1, ..., XN). These
unifications are categorized further based on the results of mode analysis, which
can infer either side of the equation as having mode in, mode out, mode unused,
or some other mode.

Four categories of primitive unfications are compiled into inline code in the
target language, which means they are executed with minimal overhead. The cate-
gories are as follows:

• Assignment unifications. These are instances of Y = X where one of the
sides has mode in and the other has mode out. If Y is the output variable
then we indicate such unifications as Y := X.

• Test unifications. These are instances of Y = X where both sides have mode
in, and the type is a type constant (such as int, for example). We indicate
such unifications as Y == X.

• Construction unifications. These are instances of Y = f(X1, ..., XN)
where Y has mode out and each Xi has either mode in or mode unused.
We indicate such unifications as Y := f(X1, ..., XN).

53

54 CHAPTER 5. THE EXECUTION ALGORITHM

append(As, Bs, Cs) :-
As == [],
Cs := Bs.

append(As, Bs, Cs) :-
As == [X | As0],
append(As0, Bs, Cs0),
Cs := [X | Cs0].

Figure 5.1: The forwards mode of append/3, with unifications expanded and
categorized as assignments, tests, constructions, and deconstructions.

• Deconstruction unifications. These are instances of Y = f(X1, ..., XN)
where Y has mode in and each Xi has either mode out or mode unused. We
indicate such unifications as Y == f(X1, ..., XN).

Other instances of unification that are permitted byMercury are compiled into calls
to out-of-line predicates whose code is automatically generated by the compiler.

We can write a version of a predicate with unifications fully expanded (includ-
ing head argument unifications). In a given mode of the predicate, we can indicate
which category the unification is inferred to be in using the notation above.

Figure 5.1 shows how this would look for the forwards mode of append/3.
The first clause performs a test on As, before assigning the value of Bs to Cs. The
second clause deconstructs As into component arguments, makes a recursive call,
then constructs Cs from the result.

5.2 Term representation

Generally speaking, a value in Mercury occupies a word, and possibly also an array
of words allocated on the heap. Constants such as integer literals are stored in the
word directly, whereas for terms built via a data constructor with arity > 0, the word
contains a pointer to the heap array, which has one word for each argument.

(This is not the whole story. Some constructor arguments can be packed to-
gether more efficiently than indicated here, but to a first approximation this gives a
reasonable indication of how much memory a term requires.)

Data constructors are represented by primary and/or secondary tag values, the
former of which is stored in the pointer’s unused low-bits and the latter of which is
stored on the heap in an extra array element, or in the word’s high-bits if it does not
require a pointer.

The primitive unifications involve the following steps:
• For an assignment unification Y := X, we just need to copy the word from

the location of X to the location of Y. If the word contains a pointer to a heap
array, this array will be shared between both variables.

5.3. SWITCHES 55

• For a test unification Y == X, we test the words for equality. If they are not
equal, and if the words contain pointers to a heap array, we test that the tags
are equal, and recursively test the arguments.

• For a construction unification Y := f(X1, ..., XN), we allocate an array
on the heap to hold the arguments and a secondary tag if required. We then
fill in heap slots for each of the Xi with mode in, and the secondary tag
if present. The word representing Y is the heap pointer, with a primary tag
stored in the low-bits.

• For a deconstruction unification Y == f(X1, ..., XN), we check that the
tags for f/N are present, then use the pointer to dereference the heap slots for
each Xi with mode out.

5.3 Switches

56 CHAPTER 5. THE EXECUTION ALGORITHM

Chapter 6

Extensions

6.1 Higher-order code

In this section we show how higher-order code can be embedded in first-order logic.
To do this, we need to define some additional abstract syntax, define a suitable uni-
verse, then provide a formal semantics. Here we only cover higher-order predicates;
higher-order functions are handled in an analogous way.

Two additional pieces of abstract syntax are required: lambda terms which
create higher-order values, and higher-order call formulas in which a higher-order
value is applied to arguments. Lambda terms are written as follows:

�v1… vn.�

This stands for the abstraction of � over the variables v1,… , vn, and corresponds
to the Mercury expression:

(pred(V1::Mode1, ..., VN::ModeN) is Detism :- Goal)

If the arguments are not variables then fresh ones are introduced and unifications
moved to the body, as is done with predicate completion. Higher-order calls are
written as follows:

(t)(t1,… , tn)

This stands for a call to the higher-order term t with t1,… , tn as arguments, and
corresponds to the Mercury goal (t)(t1, ..., tN).

In order to extend our first-order universe to handle higher-order terms, we
need to add elements that the lambda terms denote. As with first-order predicates,
lambda terms denote relations over the universe—that is, mappings from tuples to
truth values—with the key difference being that these relations are also members
of the universe itself.

For a first-order universe U , the set of all n-ary relations corresponds to the
powerset of U n. We might try to construct a higher-order universe by including the
powerset along with the original set, then including all terms that can be constructed

57

58 CHAPTER 6. EXTENSIONS

from what we would then have, and so on. We would, however, inevitably end up
with a set that supposedly includes its own powerset, but this would violate the
theorem of Cantor that says this cannot happen. In a sense, the universe we have
tried to define is too large to be considered a set. We can repair this situation by
limiting our notion of powerset to only include computable relations.

A higher-order model constructed by limiting the powerset relation is known
as a general model. If the powerset does not include every relation, then it cannot
properly characterize the intended interpretation of second-order logic. However,
for the purposes of programming language semantics, including just the computable
relations ought to be sufficient to cover anything the programmer intends. A full
semantics for second-order logic would be too powerful for our purposes.

With the universe we have just defined, we can give our semantics. Let t be the
lambda term �v1… vn.� and let � be an assignment. Given u1,… , un ∈ U , define
�′ as �{vi → ui}. Then I�(t) is the relation such that ⟨u1,… , un⟩ maps to true in
I�(t) if and only if I�′(�) is true.

Conversely, let t be any term denoting a higher-order value with arity n, and let
� be an assignment. Given terms t1,… , tn, we define I�((t)(t1,… , tn)) as true if
and only if the tuple ⟨I�(t1),… , I�(tn)⟩ maps to true in the relation I�(t).

We can express the above two logical equivalences more formally as follows:

⟨u1,… , un⟩ → true
in I�(�v1… vn.�) ⇐⇒ I�′(�) where �′ = �{vi → ui}

I�((t)(t1,… , tn)) ⇐⇒ ⟨I�(t1),… , I�(tn)⟩ → true in I�(t)

Free variables in the lambda expression, that is, free variables in � other than the
vi, are assigned values by �, which is the assignment for the formula where the
lambda term occurs. The vi, on the other hand, are assigned values by �, which is
the assignment for the formula where the higher-order call occurs.

Lambda terms are implemented with “closures”, which are ground data terms
that consist of a code pointer, along with a ground data term for each of the free
variables in the lambda term. The ground data terms come from the substitution
at the point where the lambda term is constructed—in our operational semantics,
free variables in the lambda expression have substitutions applied to them by earlier
unifications, in the same way that other free variables do.

The code pointer is to a piece of code generated by the compiler. The gen-
erated code represents a predicate whose arguments consist of the free variables
in the lambda term, followed by the vi variables. Implementing the higher-order
call involves appending ground data terms for the higher-order call arguments to
the ground data terms in the closure, then jumping to the code pointer with these
ground terms as the arguments.

6.2. PARTIAL FUNCTIONS 59

6.2 Partial functions

Wementioned in Section 3.6 that, while the predicate calculus requires that all func-
tions be total, Mercury allows them to be partial in the form of semidet functions.
Classically, every term denotes something, but for a semidet function applied to
arguments outside the function’s domain (that is, where the function application
fails) nothing is denoted.

Such terms are sometimes called non-denoting terms, and a logic that allows
non-denoting terms is called a free logic. We define the semantics by treating as
false any atomic formula containing a non-denoting term; this approach is known
as negative free logic.

In negative free logic, an “existence check” is required for each partial function
called within an atomic formula, except those that are already of the form y =
f (t1,… , tn). The existence check succeeds if and only if the partial function term
does actually denote something.

The existence check can be implemented by equating the function call with
a fresh variable, and replacing the function call in the atomic formula with the
variable we have just introduced. The original atomic formula is then replaced with
the conjunction of the new variable equation and the new atomic formula, with the
new variable existentially quantified.

That is, if t is a partial function call occurring in the atomic formula �, v is a
fresh variable, and �′ is � with the sub-term t replaced by v, then � is replaced as
follows:

� becomes ∃v. v = t ∧ �′

If in v = t the call to t fails, then t is non-denoting, so the conjunction fails as
negative free logic required the original atomic formula to do. Thus, since ∃ only
quantifies over values in the universe, existentially quantifying the fresh variable
quite literally performs the existence check.

For example, consider the following declaration for a function that returns the
nth element of a list, or fails if n is out of range.

:- func index(list(T), int) = T is semidet.

The goal
p(index(L, 3))

would be translated into
some [V] (V = index(L, 3), p(V))

If L has fewer than three elements then index(L, 3) is non-denoting, and the call
to p should therefore fail. And indeed the translated goal would, since there is no
value for V for which the formula is true.

In our operational semantics from Section 4.5, function calls are handled in
such a way as to be equivalent to the above. The clause return value is used directly

60 CHAPTER 6. EXTENSIONS

instead of introducing the variable V, but in the end the effect is the same as the
translation we have just given, since renamed variables from the clause behave the
same as existentially quantified variables.

Negative free logic has some features often considered undesirable. For exam-
ple, the goal index(L,N) = index(L,N) is false if the index is out of range, even
though syntactic identity suggests it ought to be true. We have defined equality se-
mantically, however, in that two terms are equal if and only if they denote the same
thing. As such, a non-denoting term can never be equal to another term, including
itself.

Perhaps more concerning is the effect on substitutivity. Consider the following
two goals:

index(L, N) \= a

V = index(L, N),
V \= a

Substitutivity would suggest that these are equivalent, but in fact if the index is out
of range then the first succeeds but the second fails. The explanation is that A \= B
is not an atomic formula, it is an abbreviation for not (A = B). Any existence
check for A or B needs to be put inside the negation, conjoined with the underlying
atomic formula. The proper translation is thus:

not some [V] (V = index(L, N), V = a)

As a consequence of this, understanding the code requires knowing which goals are
considered atomic, and which look atomic but are actually abbreviations.

If any of these effects leave an unpleasant taste, the best advice is to avoid
semidet functions where possible and use semidet predicates instead. Functions
are allowed to be semidet because such functions are the natural way to interpret
field access functions where there is more than one constructor in the type. There
is no obligation for users to write other functions in this way, however, and if there
are such functions to be called, they can always be wrapped in a semidet predicate.

6.3 Exceptions

What is the declarative semantics of throwing an exception? This may seem an
obvious question, since a declarative semantics is provided for catching exceptions.
But despite this, at the time of writing the Mercury documentation does not give a
clear answer.

It might be tempting to just say that, declaratively, throwing an exception is the
same as being false. In both cases, no variable bindings are produced. This does
not work out, however, since an exception thrown from inside a negation should be
the same as an exception thrown from outside. If exceptions are meant to be false
then negated exceptions must be true, which breaks our own rule.

6.4. TYPES 61

The operational requirements are sufficiently understood: resolving an excep-
tion must neither succeed nor fail. There can be no problem with soundness, since
success and failure are the only results that would constrain the models, but this is
not the case for completeness. In order to maintain completeness, throwing an ex-
ception cannot be valid as that would require success, and it cannot be unsatisfiable
as that would require failure.

There is a third option, however, which is that throwing an exception can be
considered contingent. That is, there exists a model in which it is true and another
in which it is false. With this arrangement the deductive system can arguably be
considered complete, since it would not be required to prove anything at all in the
case of thrown exceptions.

Another way of saying this is that, declaratively, the throw predicate may be
defined as follows.

:- pred throw(T::in) is erroneous.
throw(X) :- throw(X).

It is thus declaratively equivalent to a loop. Operationally, of course, it immediately
returns to the closest enclosing catch rather than running forever.

One thing to be aware of when programming with exceptions is that, in some
cases, the mode-determinism assertions imply that a given call is equivalent to true.
As mentioned in Section 3.7.7, unless a strict operational semantics is used the
compiler may optimize away such calls (the default semantics is strict, so this does
not happen unless a non-default semantics is explicitly selected). Thus, if the call
is intended to throw an exception, the exception may not end up being thrown.

The same issue can arise with the semantics we give here. Consider the follow-
ing goal:

(if throw(X) then true else true)

Our semantics says this goal is true in any given model, irrespective of whether
or not throw(x) is true in that model. The compiler would therefore be justified in
replacing this goal with true, meaning that the exception does not get thrown. As
discussed above, however, it will not do so if the operational semantics is strict.

6.4 Types

So far we have largely ignored types, so the axioms we gave in Section 3.7 are
technically incorrect. However, if we have unary predicates that correspond to each
type, we can adjust the quantifiers to account for types. This process is known as
relativization.

For example, given a type T and a variable x of this type, we can quantify
the variable in the formula � by writing ∀x ∶ T . � and ∃x ∶ T . �. If the predicate
corresponding to this type is pT , then these formulas can be treated as abbreviations
for ∀x. pT (x)→ � and ∃x. pT (x) ∧�, respectively. This will ensure that only well-
typed terms will play a role in the semantics.

62 CHAPTER 6. EXTENSIONS

Chapter 7

Non-classical models

This section is not yet written. See the following for the main ideas:
NAISH, L., & SØNDERGAARD, H. (2014). Truth versus information in logic
programming. Theory and Practice of Logic Programming, 14(6), 803-840.

63

64 CHAPTER 7. NON-CLASSICAL MODELS

Appendix A

Glossary index

answer (pp. 42, 46) The substitution that results from a successful computation.
assignment (p. 33) A mapping from variables to values in the universe. (p. 53) A

unification of the form Y = X, where one of the sides has mode in and the
other has mode out.

atomic goal (p. 45) A unification, predicate call, or logical constant.
axiom (p. 25) A closed formula that is taken to be true without proof.
backtrack (p. 47)When executing a query, to jump to themost recent choice point,

if one exists, in order to resume execution with a different choice.
bound (p. 21) A variable in a formula that is captured by a quantifier is said to be

bound. (p. 43) A variable that is mapped by a substitution is said to be bound.
choice point (p. 47) A point in a computation at which a clause or disjunct selection

was made, and which can be backtracked to in order to execute alternative
branches.

clause completeness (p. 13) Of a predicate or function definition, having clauses
that cover every possible input that has a solution.

clause soundness (p. 13) Of a clause defining a predicate or function, producing
solutions that are true in the intended interpretation.

closed formula (p. 22) A formula in which there are no free variables.
closure (p. 58) The representation of a lambda term. It consists of a code pointer,

along with values for the free variables in the lambda term.
completeness (pp. 48, 51) A deductive system is complete if validity implies prov-

ability. Completeness, in reference to a deductive system, is not to be con-
fused with operational completeness or clause completeness.

65

66 APPENDIX A. GLOSSARY INDEX

completion (p. 30) Conversion of a set of clauses that define a predicate or function
into a single closed formula.

consistent (p. 36) A theory is consistent if it does not contain any contradictions.
constant (p. 20) A function that does not take any arguments.
construction (p. 53) A unification of the form Y = f(X1, ..., XN), where Y

has mode out and each Xi has either mode in or mode unused.
contingent (pp. 36, 61) True in some model, and false in some other model.
data term (p. 25) A term that does not contain any function calls.
declarative debugging (pp. 14–15) A debugging algorithm based on comparing

the declarative behaviour of the program with the intended interpretation.
declarative semantics (pp. 5, 35) The collection of models of a Mercury program.
deconstruction (p. 54) A unification of the form Y = f(X1, ..., XN), where Y

has mode in and each Xi has either mode out or mode unused.
definite (p. 41) A clause is definite if it is either a fact, or its body is a conjunction

of atomic goals.
failure (p. 46) A derivation that terminates without producing an answer. (p. 46)

Finishing execution of a query after exhausting all choice points.
free (p. 21) A variable in a formula that is not captured by a quantifier is said to be

free. (p. 43) A variable that is not mapped by a substitution is said to be free.
full logic (p. 49) A logic equipped with a deductive system that is both sound and

complete.
ground (p. 43) A variable that is mapped by a substitution to a term containing no

variables is said to be ground. A term that contains no variables is also said
to be ground.

Herbrand interpretation (p. 5) An interpretation where the universe of values is
just the set of ground data terms.

Herbrand universe (p. 32) The set of all ground data terms.
intended interpretation (p. 7) The interpretation of a specification.
interpretation (pp. 7, 33) A mapping from syntactic elements to the semantic do-

main.

67

logical (p. 11) Of a predicate or function, having a consistent declarative semantics
across all calls; pure. (p. 20) Pertaining to the symbols that are a fixed part
of the language, in contrast to the predicate and function symbols defined by
the program.

missing answer (p. 13) One of the two classes of bugs that are observable in the
declarative semantics. An answer is missing if it is false according to the
program as written, but true in the intended interpretation. Also see wrong
answer.

model (p. 35) An interpretation under which a set of axioms are all true.
negation-as-failure (p. 50) An inference rule that says if a goal succeeds, then the

negation of that goal should finitely fail, and vice versa.
negative free logic (p. 59) A logic that permits non-denoting terms, and treats

atomic formulas containing non-denoting terms as being false.
non-denoting term (p. 59) A term that contains a call to a semidet function, with

arguments for which the function fails.
non-logical (p. 11) Of a predicate or function, not having a consistent declarative

semantics across all calls; impure. (p. 20) Pertaining to the predicate and
function symbols defined by the program, in contrast to the symbols that are
a fixed part of the language.

occurs check (p. 27) A check that a variable is not bound to a term that contains
that variable. Also know as an occur check.

operational completeness (p. 49) The extent to which an operational semantics is
able to avoid unnecessary nontermination.

operational semantics (pp. 41–49) The computation defined by a program.
partial correctness (p. 13) Correctness according to the declarative semantics. It

does not consider issues such as computational complexity.
provable (p. 48) A closed formula for which there exists a successful derivation is

said to be provable. Can be written as Γ ⊢ �.
pure (p. 9) Of a predicate or function, having a consistent declarative interpretation

across all calls, regardless of the mode in which the call is made.
query (p. 42) The initial goal for a computation.
relativization (p. 61) Adding explicit type checks that cause failure, to an other-

wise untyped logic program.
resolution (p. 45) A type of inference rule. Logic programming uses SLD resolu-

tion as its primary mechanism of computation.

68 APPENDIX A. GLOSSARY INDEX

satisfiable (p. 36) A model satisfies a closed formula if it maps the formula to true.
If a model exists that satisfies a formula, that formula is said to be satisfiable.

semantic equality (p. 24) The relation between terms that holds if and only if both
terms denote the same value.

SLD tree (p. 47) A tree formed from SLD derivations by including choice point
nodes, where the derivations branching off from that choice point are the
child nodes.

solution (pp. 33, 36, 46) An assignment or set of assignments under which, in every
model, a formula is true.

solved form (pp. 43, 44) A goal that takes the form of a substitution.
soundness (pp. 48, 51) A deductive system is sound if provability implies validity.
substitution (p. 42) A partial mapping from variables to terms, such that no vari-

able that maps to a term occurs in any of the terms in the mapping.
success (p. 46) A derivation that produces an answer.
test (p. 53) A unification of the form Y = X, where both sides have mode in.
theorem (p. 25) A closed formula that is provable from a set of axioms. The col-

lection of all such closed formulas is known as a theory.
unification (p. 43) The process of finding the most general substitution that makes

two terms identical.
Unique Names Assumption (p. 25) The assumption that two ground data terms

are equal only if they are syntactically identical.
unsatisfiable (p. 36) False in all models.
valid (p. 36) True in all models.
value (p. 32) An element of the semantic universe. Values are denoted by data

terms.
wrong answer (p. 13) One of the two classes of bugs that are observable in the

declarative semantics. An answer is wrong if it is true according to the pro-
gram as written, but false in the intended interpretation. Also see missing
answer.

	Preface
	Introduction
	Purpose
	Mercury programming in a nutshell
	Notation
	Outline of the guide

	Declarative semantics by example
	First examples
	Intended interpretations
	Running example: queue ADT
	Purity
	Types, modes, and purity
	Mode-dependent clauses
	Case study: string.append/3

	Partial correctness
	Declarative debugging
	Summary

	First-order predicate calculus
	Overview
	Syntax
	Expressions and goals
	Implicit quantification
	Clauses
	First-order logic with equality
	Axioms
	What are axioms?
	Equality axioms
	Clause soundness axioms
	Combined clause soundness axioms
	Clause completeness axioms
	Predicate and function completion
	Mode-determinism assertions

	Classical semantics
	Universes
	Assignments
	Interpretations
	Models

	Example
	Philosophical remarks

	Operational semantics
	Overview
	Queries
	Substitutions
	Unification
	SLD Resolution
	Soundness and completeness
	Operational incompleteness
	Negation-as-failure
	Structural rules
	What does SLD stand for?

	The execution algorithm
	Run-time unification
	Term representation
	Switches

	Extensions
	Higher-order code
	Partial functions
	Exceptions
	Types

	Non-classical models
	Glossary index

