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Abstract. Several earlier papers have shown that bounded quantifica-
tion is an expressive and comfortable addition to logic programming
languages. One shortcoming of bounded quantification, however, is that
it does not allow easy and efficient relation of corresponding elements of
aggregations being quantified over (lockstep iteration). Bounded quantifi-
cation also does not allow easy quantification over part of an aggregation,
nor does it make it easy to accumulate a result over an aggregation. We
generalize the concept of bounded quantification to quantification over
any finite sequence, as we can use a rich family of operations on sequences
to create a language facility that avoids the weaknesses mentioned above.
We also propose a concrete syntax for sequence quantification in Prolog
programs, which we have implemented as a source-to-source transforma-
tion.

1 Introduction

Prolog [8] has no standard construct for looping over recursive data structures or
arithmetic sequences. Beginning Prolog programmers are often told that Prolog
makes recursion very natural, so no looping construct is needed. While this is
true, it is also true that a looping construct could make some programs clearer
and more succinct. The absence of looping construct from Prolog is all the more
surprising since the predicate calculus on which it is based has had two such
constructs — universal and existential quantification — for more than 120 years
[5].

In designing his automatic theorem proving framework, Robinson restricted
his attention to clauses, proving resolution to be a sound and complete inference
rule [12]. Kowalski, in proposing the paradigm of logic programming, recom-
mended the further restriction to Horn clauses [9]. A Horn clause is a disjunction
of one atom (an atomic predication) and zero or more negated atoms, though
it is more commonly thought of as a conjunction of zero or more atoms (called
the clause body) implying a single atom (the head). All variables in a clause
are universally quantified over the whole clause. When a clause is viewed as an
implication, however, variables not appearing in the clause head can be seen as
existentially quantified over the clause body.



Prolog, however, was quick to loosen the Horn clause restriction. A disjunc-
tion in the body of a clause is easily accomodated by replacing the disjunction
with an atom invoking a newly-created predicate whose definition comprises a
clause for each disjunct. Negated atoms in a clause body can be handled using
negation as failure to prove [4]. These are both now standard Prolog features.

Similarly, several earlier papers have suggested adding a restricted form of
universal quantification, called bounded quantification, to logic programming lan-
guages. Bounded quantification is a form of universal quantification where the
set of values quantified over is explicitly specified, adopting a shortcut common
in much mathematical writing. Instead of writing

∀x . x∈s→ p(x) or ∃x . x∈s ∧ p(x)

they write
∀x∈s . p(x) or ∃x∈s . p(x)

Not only is this notation more concise, it seems quite natural to specify what a
variable is to range over in the same place as how it is quantified.

Sadly, Prolog systems, and the Prolog language standard, have not been
quick to accept bounded quantification. The aim of the present paper, then, is to
propose a generalization of bounded quantification that is simultaneously more
powerful and flexible than bounded quantification, yet still efficient, convenient,
and reasonably portable.

The remainder of this paper is organized as follows. Section 2 reviews the
history of bounded quantification and closely related work. Section 3 introduces
the concept and semantics of sequence quantification. Section 4 discusses primi-
tive sequences and how they are defined. It also discusses how sequences can be
defined in terms of other sequences, providing the power behind sequence quan-
tification. Section 5 presents the surface syntax we use for sequence quantifica-
tion, and how the user can introduce new syntactic sugar, as well as addressing
the subtle issue of resolving the scoping of variables not explicitly quantified.
In section 6, we discuss our implementation of this facility, including a discus-
sion of how we generate efficient code. Finally, we present our future work and
concluding remarks in sections 7 and 8.

2 Bounded Quantification

Probably the oldest form of universal quantification in logic programming was
the all/2 [11] construct of NU Prolog [16]. Using this, one could write, e.g.,
all [X] p(X) => q(X) to mean ∀x . p(x) → q(x). The most common use of
this would be in what amounts to a restricted kind of bounded quantification:
to check that every element of a list satisfies some constraint. Implementa-
tion was in terms of nested negation: the last example would be executed as
\+ (p(X), \+ q(X)), except that NU Prolog would execute this negation even
if X was not bound (ordinarily, NU Prolog suspends execution of non-ground
negations). Since the implementation is in terms of negation, this effectively



means that the all construct could only perform tests, and could not bind vari-
ables.

In the earliest paper we have found to discuss bounded quantification in En-
glish, Voronkov [18] gives a model-theoretical, least fixed point, and procedural
semantics for typed logic programming with bounded quantification. In addition
to supporting ∀X∈S . p(X) and ∃X∈S . p(X) where S is a list and X ranges
over the elements of that list, he also defines ∀X v S . p(X) and ∃X v S . p(X)
where X ranges over the tails of the list S. Voronkov also presents a translation
from logic programs with bounded quantification to ordinary logic programs.

Barklund and Bevemyr [3] discuss bounded quantification in the context of
arrays in Prolog. For this, they are more interested in quantifying over integer
ranges, to be used as array indices, than lists. Thus rather than quantifying over
forms such as X ∈S, they quantify over L ≤ I < H forms, specifying that I
ranges from L up to but not including H. Their focus is also practical: they
have implemented their approach by extending the LUTHER WAM emulator
with specialized features for bounded quantification. By quantifying over array
indices, they are able to relate corresponding elements of two different arrays.
This is a significant step forward, but it does not allow them to conveniently or
efficiently relate array elements with elements of other structures, for example
list or tree members. Another advance of this work is the inclusion of aggrega-
tion operators. In addition to quantifying over an integer range, they also allow
computing the sum or product of an expression over such a range. They discuss
numerous other such useful aggregations operators, but do not go so far as to
suggest a general framework for defining them. They also observe that it may be
possible to parallelize the execution of bounded quantifications, since the indices
may be handled independently. Barklund and Hill [2] propose making a similar
extension to Göedel.

Apt [1] gives many compelling example programs showing the power of
bounded quantification in logic programming as well as constraint logic pro-
gramming. Like Voronkov, he prefers typed logic programming.

The OPL language [7] provides a forall quantifier allowing iteration over
integer ranges and enumerations, and allows the order of iteration to be explicitly
specified. It also allows only some values, determined by an explicit test, to be
iterated over. Additionally, it provides built in aggregations to compute the
sum, product, minimum and maximum of a set of values. It does not appear to
provide any facility for allowing iteration over any other domain, nor for lockstep
iteration.

The Logical Loops package of the ECLiPSe system [14], developed inde-
pendently of the present work, provides a facility similar similar to bounded
quantification, although it eschews that label. Logical loops provide a number
of iteration primitives, which can be combined to allow general lockstep itera-
tion. One of the iteration primitives is much like our own aggregation facility
(see Section 4.3), and allows fully general aggregation. In fact, this one primitive
subsumes the functionality of all the other iteration primitives.



However, logical loops does not allow new iteration primitives to be defined;
one must fall back on the less convenient general primitive. Nor does the package
provide a primitive to iterate over part of a structure. Although the general
iteration primitive can accommodate this, the author admits the technique is
“rather unnatural.” Finally, logical loops always commit to the fewest possible
iterations. It is not possible for a logical loop to generate the list it is to iterate
over or the upper bound on an arithmetic iteration, as it will commit to loop
termination as early as possible.

3 Sequence Quantification

Our approach diverges from these by generalizing what data structures we can
quantify over. Where the earlier works only allow quantification over integer
ranges and lists, we wish to allow quantification over any sequence of values the
user cares to define. Our belief is that a single, simple universal quantification
operation, together with the ability to define new kinds of sequences to iterate
over, provides a much more powerful facility than a larger set of quantification
and aggregation operations limited in the constructs they quantify or aggregate
over. The power and flexibility of this approach approaches that of iteration
constructs in imperative languages, such as for, while, and do loops, without
losing logic programming’s declarative character. Similarly, it provides most of
what is provided by the usual set of higher order functions in modern functional
languages (see, e.g., [17]).

The basic form of sequence quantification is much as for bounded quantifi-
cation:

forall variable in sequence do goal

where goal is any Prolog goal, variable is a Prolog variable or term, and sequence
is a term representing a sequence of values. (The actual syntax is slightly more
general than this to allow for some syntactic sugar, as discussed in Section 5.)

We specify the semantics of sequence quantifications by translations similar
to those of Voronkov [18], as shown in table 1. This translation differs from

Formula Translation and extra clauses

∃y . F p(vars(F )\{y}) with clause:
p(vars(F )\{y})← F

x∈s p(x, s) with clauses:
p(x, s)← next(s, x, s′)
p(x, s)← next(s, x′, s′) ∧ p(x, s′)

∀y∈s . F p(vars(F )\{y, s}, s) with clauses:
p(vars(F )\{y, s}, s)← empty(s)
p(vars(F )\{y, s}, s)← next(s, y, s′) ∧ F ∧ p(vars(F )\{y, s}, s′)

Table 1. definition of quantifiers and sequence membership



Voronkov’s in that we specify the semantics of ∃ generally, not only for bounded
quantifications, and we specify the semantics of∈outside the context of a quan-
tification. The definition of∈ is essentially the standard Prolog member/2 predi-
cate, generalized to work on sequences. Our definition of universal quantification
is similar to Voronkov’s, but is generalized to work on any sort of sequence.

4 Sequences

A sequence is an ordered collection of terms, possibly with repetition. For our
purposes, a sequence is characterized by two predicates: empty(s) holds if s is
an empty sequence, and next(s, e, t) holds if e is the first element of sequence
s, and t is the remainder of sequence s after e. We implement these in Prolog
as predicates sequence_empty/1 and sequence_next/3. These predicates may
be defined by anyone,1 meaning that users of the package can define their own
sequences to quantify over; they are not restricted to the sequences already
supported by the implementation.

4.1 Primitive Sequences

The most obvious kinds of sequences are lists and arithmetic sequences. These
are defined as follows:

sequence_empty(list([])).

sequence_next(list([H|T]), H, list(T)).

sequence_empty(Low..High) :-

High is Low-1.

sequence_next(Low..High, Low, Next..High) :-

( nonvar(High) -> Low =< High ; true ),

Next is Low + 1.

Note the list/1 wrapper around the list sequence. All sequences must have a
distinguished wrapper indicating what kind of sequence they are. This permits
sequences to be produced as well as consumed by quantifications. The nonvar

test in the final clause ensures that when the upper limit on an integer range
is available at run time, it will be used to ensure iteration does not exceed the
limit, but when no limit is supplied, iteration can proceed indefinitely.

Many other types of sequences are possible. For example, the following clauses
define inorder(Tree) as the sequence of the elements of Tree traversed inorder.
We assume empty denotes the empty tree, and tree(L,Label,R) denotes a tree
with root label Label and left and right subtrees L and R respectively.

sequence_empty(inorder(empty,[])).

1 Here we make use of standard Prolog’s multifile declaration, allowing users to
define these predicates with clauses in any number of files.



sequence_next(inorder(tree(L,Label,R),Stack), First, Rest) :-

sequence_next(inorder(L,[Label-R|Stack]), First, Rest).

sequence_next(inorder(empty,[First-R|Stack]), First,

inorder(R,Stack)).

Similar definitions could be written for preorder and postorder traversal.

4.2 Sequence Operations

The power of sequence quantification becomes apparent when one considers the
many ways sequences can be modified and combined.

One important facility that is not naturally supported by bounded quantifi-
cation is lockstep iteration, i.e., parallel quantification over two sequences. For
example, we might wish to specify that a relation R holds between the corre-
sponding elements of l and m. Given a function zip that maps two sequences
of the same length to a sequence of pairs of their corresponding elements, we
could express this as: ∀〈x, y〉∈ zip(l,m) . R(x, y) Note that this approach is very
similar to that taken by the Python language in providing its lockstep iteration
facility [20].

Of course, logic programming does not have functions (at least Prolog does
not), so to use this technique we would need to write something like:

zip(L, M, Pairs),

forall X-Y in Pairs do r(X,Y)

This unfortunately creates a separate list of pairs, wasting time and space. This
shortcoming could be solved through deforestation [19], however this is not a
common feature of Prolog compilers.

Our approach is instead to define a new kind of sequence constructed from
two other sequences. This can be done by extending the definitions of sequence_empty/1
and sequence_next/3:

sequence_empty((A,B)) :-

sequence_empty(A),

sequence_empty(B).

sequence_next((A,B), (A1,A2), (Ar,Br)) :-

sequence_next(A, A1, Ar),

sequence_next(B, B2, Br).

This allows us to write

forall (X,Y) in (L,M) do r(X,Y)

Note that this approach requires no deforestation for optimization; a much sim-
pler program optimization, as discussed in section 6, can remove the unnecessary
term constructions.



Functional programmers will recognize this relation as similar to the standard
map function, which applies a function to each element of a list, collecting the
results into a list. There are several differences, however. Firstly, the sequence
quantification approach works on sequence of any sort, not just lists. Secondly,
it generalizes to arbitrary numbers of sequences. We could as easily have written

forall (X,Y,Z) in (L,M,N) do r(X,Y,Z)

to specify that r/3 relates corresponding elements of 3 sequences.
Sequence quantification also retains logic programming’s relational character:

it can be used to compute any of the sequences from any others, as long as the
body of the quantification (the part after the do) can work in that mode. In the
latter example, L, M, and/or N can be produced by this quantification, providing
the first, second, and/or third argument of r/3 can be output.

Voronkov [18] also defines quantification over tails of lists using the syntax
∀T v L . . .. We can achieve this effect by defining sequence operator tails which
can be defined by:

sequence_empty(empty).

sequence_next(tails(S), S, Rest) :-

( sequence_next(S, _, Sr) ->

Rest = tails(Sr)

; Rest = empty

).

This allows us to define an ordered list similarly to Voronkov:

ordered([]).

ordered([_]).

ordered(L) :-

forall Tail in tails(L) do

( Tail=[X,Y|_] ->

X=<Y

; true

).

A better definition of this predicate will be presented in section 5.
Another operation we can perform on sequences is selecting only part of a

sequence. For example, we can define a sequence filter: a sequence of the elements
of another sequence with the elements not satisfying a specified filter predicate
removed.

sequence_empty(when(S,F)) :-

( sequence_empty(S)

; sequence_next(S, S1, Sr),

\+ call(F, S1),

sequence_empty(when(Sr,F))



).

sequence_next(when(S,F), N, Rest) :-

sequence_next(S, S1, Sr),

( call(F, S1) ->

N = S1,

Rest = when(Sr,F)

; sequence_next(when(Sr,F), N, Rest)

).

This can be used, for example, to count the positive elements of a sequence:

forall _ in (when(list(L),<(0)), 1..Count) do true

Here we specify that there are the same number of elements in 1..Count as in
when(List,<(0)). Note that the predicate <(0) will be given one more argument
which will come last. Thus it specifies that zero is less than that argument.

Another useful sequence operator is while; this is similar to when, except that
the sequence terminates once the first element not satisfying the given predicate
is found. This can be used to simulate a while loop. For example,

forall (X,Y) in (while(inorder(Tree), >=(100)), list(list))

do X = Y

will bind List to a list of the elements of Tree up to 100, stopping accumulation
when the first element larger than 100 is found. Similarly, the once sequence
operator specifies that the initial part of the sequence whose elements do not
satisfy the specified test should be dropped, with all the remaining elements
taken.

4.3 Accumulation

One common use of looping constructs in conventional programming languages
is to accumulate a result. Barklund and Bevemyr propose a fixed set of accu-
mulating quantifiers including sum, product, min and max. Thus far, sequence
quantification only permits corresponding elements of sequences to be related,
whereas accumulation requires elements to be related to previous elements of
the sequence. We achieve this by introducing an accumulation sequence, which
is a sequence of pairs, where the first element of each pair is equal to the second
element of the previous pair. This is the only constraint on such a sequence,
which we define as:

sequence_empty(thread(X,X)).

sequence_next(thread(Init,Final), (Init,Next),

thread(Next,Final)).

We use such a sequence to accumulate by relating the two elements of the
pair. We defer examples of accumulation to Section 5, where we introduce some
syntactic sugar to make accumulations more attractive.



4.4 Scoping

One interesting question arises: how should variables not explicitly quantified be
handled? For example, what does a goal like

forall X in L do p(X,Y)

mean? Is Y scoped to the p(X,Y) goal or to the whole clause? In the former case,
it means ∀x∈l . ∃y . p(x, y) whereas in the latter it means ∃y . ∀x∈l . p(x, y).

Unfortunately, no single answer to this question seems intuitive in all cases.
If the goal had instead been

Y=42, forall X in L do p(X,Y)

then it seems clear the intended scope of Y would be the whole clause. However,
for the goal

forall X in L do (p(X,Y), q(Y))

the most natural reading would be that Y should be scoped inside the forall

construct (i.e., this query should not require that Y be the same for all Xs).
Therefore we adopt the strategy used in the Mercury language[6]: a variable

appearing only inside a forall construct is existentially quantified inside the
universal quantification, while other variables are existentially quantified over
the whole clause body. When this does not achieve the desired effect, explicit
existential quantification can be used to specify the desired scoping of certain
variables. However, this is rarely necessary as the default behavior is almost
always what the user intends and expects.

Compare this, for example, to the behavior of Prolog’s setof/3 and bagof/3
predicates, which implicitly scope all variables not appearing in the template
(first) argument to the whole clause. Thus the anonymous variable in the goal

setof(X, p(X,_), List)

is scoped wider than the setof goal, resulting in unintended behavior in this
case. To scope the anonymous variable inside the setof goal, it must be rewritten
as

setof(X, Y^p(X,Y), List)

Experience shows that this often cause confusion for inexperienced Prolog pro-
grammers.

Conversely, the logical loops package [14] implicitly scopes all variables ap-
pearing in a loop to the inside of the loop. A variable appearing both outside
and inside a loop is considered to be two distinct variables, unless a param form
is added to the loop to indicate that the variable is to be scoped outside the
loop. This, too, seems likely to cause confusion.

The disadvantage of our approach is that it can cause problems in some
cases when a sequence quantification is used as a parameter to a higher order
predicate. However, it should be noted that sequence quantification is intended
to replace most uses of higher order code, and that explicit quantification can
always be used to specify the intended scoping.



5 Syntactic Sugar

For a practical implementation of sequence quantification as a Prolog extension,
we believe it is important to provide a syntax which is intuitive and palatable.
In this, we have followed the spirit of the CLISP package included as part of the
INTERLISP language [13], with an emphasis on extensibility.

Firstly, we generalize the Template in Sequence form to allow other ways
to specify the generation of a sequence of bindings for a template. This is ac-
complished by allowing users to define clauses for the sequence_generator/3
predicate. When a goal of the form forall Generator do Goal is found,

sequence_generator(Generator,Template,Sequence)

is called, and the quantification is then treated as if it had been forall Template
in Sequence do Goal.

This facility is used to provide some (hopefully!) more intuitive ways to write
quantifications. Of course, these are only optional syntactic sugar; the syntax
given earlier continues to work.

One example is the as operator. This allows each variable to be given together
with the sequence it is quantified over, rather than requiring all the quantified
variables to be bundled together and all the sequences to be bundled together.
The clause:

sequence_generator(G1 as G2, (T1,T2), (S1,S2)) :-

generate_sequence(G1, T1, S1),

generate_sequence(G2, T2, S2).

together with an operator declaration for as, allows us to write:

forall X in list(L) as (S0,S) in thread(0,Sum) do S is S0 + X.

instead of

forall (X,S0,S) in (list(L),thread(0,Sum)) do S is S0 + X.

Note that generate_sequence/3 just ensures that its first argument is not a
variable, and then calls sequence_generator/3.

Another syntactic embellishment is provided by:

sequence_generator((Init->V0->V->Final),

(V0,V), thread(Init,Final)).

This provides an alternative syntax for thread sequences introduced in Sec-
tion 4.3 that presents the current and next variables for a thread between the
initial and final values, allowing us instead to code the previous example as

forall X in list(L) as (0->S0->S->Sum) do S is S0 + X.



Intuitively, this says that we accumulate a value beginning with 0 and winding
up with Sum, and at each iteration S0 is the previous value and S is the next
one. That is, Sum is the sum of the elements of list L.

Note that there is no requirement for there to be any relationship between the
current and next variables in an accumulation, only that S be determined. For
example, we could better define the ordered predicate of section 4.2 as follows:

ordered(Seq) :-

( sequence_empty(Seq) ->

true

; sequence_next(Seq, First, Rest),

forall E in Rest as (First->Prev->This->_) do

( E >= Prev,

This = E

)

).

Procedurally, this “initializes” Prev to the first element of Seq, and runs over
the rest of the sequence verifying that each element is larger than Prev, and
setting the value of Prev for the next iteration to the current element. This is
similar to the code one might write in an imperative language, yet is entirely
declarative.

Note that sequence generators can be used anywhere in the program, not only
inside universal quantifications. When not immediately preceded by forall, they
are considered to be in an existential context, and specify membership in the
sequence. For example, a goal

X in list(L) as N in 1.._

would specify that X is an element of L and N is the position of X in that list.

6 Implementation

We have a Prolog implementation of sequence quantification built on the com-
mon term_expansion/2 Prolog extension. As each clause is compiled, it is
scanned for explicit universal and existential quantifications. When such a goal
is found, it is replaced by a call to a newly created predicate, plus the definition
of that predicate.

The generated predicates are quite close to the form shown in table 1. A
universal quantification of the form

forall T in S do body

would initially be translated to a goal

’forall i’(S)

where forall i is defined as:



’forall i’(S0) :-

( sequence_empty(S0)

; sequence_next(S0, T, S)

body,
’forall i’(S)

).

Note that this code is entirely declarative if the body is. In particular, no
cuts or if-then-else constructs are used to prevent backtracking. Thus a quan-
tification may be used in any mode that the body and sequence_next and
sequence_empty definitions will support. For example,

forall _ in list(L) as _ in 1..Length

will work to check that the length of L is Length, or to determine the length of
list L, or to generate a list of length Length, or even to backtrack over longer
and longer lists.

Several steps are taken to improve the efficiency of the generated code, the
goal being to produce code as close as possible to the efficiency of the code an
experienced Prolog programmer would write for this purpose. Firstly, users may
specify improved code to generate for the empty and next predicates for partic-
ular kinds of sequences. This is done by providing clauses for the user-extensible
predicates empty_specialization/5 and next_specialization/7. These are
certainly more complex than simply providing clauses for sequence_empty/1 and
sequence_next/3, but they are manageable. For example, to optimize the han-
dling of list sequences, using L=[] and L=[H|T] in place of sequence_empty(L)
and sequence_next(L,H,T), these clauses suffice:

empty_specialization(list(L), _, L=[], Clauses, Clauses).

next_specialization(list(L), _, H, list(T), L=[H|T],

Clauses, Clauses).

In some cases, a sequence may be more efficiently handled if it is first trans-
formed into another form of sequence. For example, the definition of sequence_empty/1
for integer range sequences is:

sequence_empty(Low..High) :- High is Low-1.

This requires an arithmetic computation to be done for each iteration. We could
define a more efficient integer range as:

sequence_empty(intseq(H,H)).

sequence_next(intseq(L,H), L1, intseq(L1,H)) :-

( (integer(H) -> L<H ; true),

L1 is L+1.

But this is less intuitive since, e.g., intseq(1,10) specifies the sequence 2..10.
In such cases, users can supply a clause for the sequence_specification/7

predicate which specifies a goal to execute before beginning iteration, a goal to
execute at the end, and an alternative sequence to use. For example



sequence_specification((L..H), _, intseq(L1,H),

(L1 is L-1), true, Cl, Cl).

would substitute the sequence intseq(L1,H) for L..H, and insert the goal L1
is L-1 before the call to the generated iteration predicate.

To make the job of writing this optimization code easier for those defining
new sequences (and keen on achieving the highest performance), the translation
performs a fairly simple-minded code specialization pass on the generated code.
This pass looks for Prolog built in predicates that can be executed at compile
time and replaces them with unifications achieving the same result. Further-
more, it executes unifications at compile time when they would unify a variable
or atomic term with the first occurrence of a variable. In general, unifications
should not be executed at compile time, since doing so may bind a variable used
before a commit (cut or if-then-else) or in an impure operation, such as assert
or input/output, changing the program behavior. It may also generate many
occurrences of a large term where only one existed in a unification.

The most important optimization performed is in the generation of looping
predicates. Rather than repeatedly taking apart and building sequence terms,
the generated code passes the needed information in separate arguments. This is
done by computing the most specific generalization of the head of the generated
predicate and the call, and extracting its variables. Similarly, we compute the
most specific generalization of each recursive call with the clause head.

Finally, we analyze the generated clause to see if one of its arguments is uni-
fied with a term with a distinct principal functor in each arm of the disjunction,
and before any impure goal. If such an argument is identified, it is moved to the
first argument position, and the disjunction is split into separate clauses, to take
advantage of the first argument indexing supported by most Prolog implemen-
tations.

The resulting code is quite efficient. For the goal

forall _ in list(L) as _ in 1..N

which states that the length of list L is N, the generated code is ’forall 2’(L, 0, N)

where ’forall 2’/3 is defined by:

’forall 2’([], A, B) :-

A=B.

’forall 2’([A|B], C, D) :-

( integer(D)

-> C<D

; true

),

E is C+1,

’forall 2’(B, E, D).

The goal

forall E in list(L)



as _ in 1..Count

as (0->S0->S->Sum)

do S is S0+E

which sums and counts the elements of a list, is translated to: ’forall 3’(L,

0, Count, 0, Sum), with:

’forall 3’([], A, B, C, D) :-

A=B,

D=C.

’forall 3’([A|B], C, D, E, F) :-

( integer(D)

-> C<D

; true

),

G is C+1,

H is E+A,

’forall 3’(B, G, D, H, F).

Finally, the goal

forall I in 1..10 do (write(I),nl)

translates to ’forall 5’(0) with:

’forall 5’(A) :-

( A=10

; A<10,

B is A+1,

write(B),

nl,

’forall 5’(B)

).

7 Future Work

Currently, adding an optimization for a new kind of sequence, as described in
section 6, is more difficult than it should be. We are investigating abstractions
that would allow simple definition of sequences that would automatically be
optimized.

There is always scope for further improvement to the specializer. It should
be possible to execute more unifications at compile time when one of the terms
to be unified is the first occurrence of a variable occurring only once or twice in
the clause. After performing the unification and removing the goal, the term will
appear at most once. Also it should be possible to unify a subsequent occurrence
of a term if no impure operation has been performed since the first occurrence.

A more important optimization would be to avoid repeating a goal in multiple
arms of a disjunction. In some cases, sequence_empty/1 may invoke the negation



of sequence_next. In such cases, the iteration predicate will call sequence_next
twice. It would be much more efficient to generate an if-then-else calling sequence_next
once in the condition.

Finally, the design and implementation of a reasonably complete — but not
overwhelming — set of sequence operators remains to be done. Fortunately, any
operators omitted from the package can be supplied by the user without much
difficulty.

We expect to release this package to the public under a suitable free or open
source software license when it is completed. It will be available from

http://www.cs.mu.oz.au/~schachte/software/

8 Conclusions

We have described a new quantification formalism for logic programming which
provides a logical facility allowing explicit iteration over any sort of sequence
the user can define, as well as looping over multiple sequences in a coordinated
manner, and arbitrary kinds of aggregations and accumulations. All of these
things are done quite naturally using various kinds of sequences, and cannot in
general be done with bounded quantification. Users can define their own kinds of
sequences, including sequences defined in terms of other sequences. This facility
has been implemented as a Prolog source to source translation.

Comparing the expressiveness of this facility with looping constructs of im-
perative languages, or with higher order operations in functional languages is
quite difficult, inevitably leading one to compare apples with oranges, or to
declaring all formalisms Turing equivalent. Still, since the primitive building
block of this facility is simply the definition of a sequence of values, and since
imperative looping constructs must loop over a sequence of values of the vari-
ables of the loop, it seems sequence quantification should be able to capture,
however naturally or unnaturally, any iteration supported by imperative looping
constructs. By providing the ability to define new kinds of sequences, and a fa-
cility for specifying syntactic sugar for them, we believe it should be possible to
capture any iteration in a fairly natural way. Furthermore, due to the declara-
tive semantics of the translation, all sequence quantifications have a declarative
reading, providing the quantified goals and sequence definition do.

Comparison with higher order functions in functional languages is more in-
teresting. Sequence quantification provides many of the facilities of modern func-
tional languages. As mentioned earlier, the , sequence operator (as in the syn-
tactically sugared version) provides a generalized version of the standard higher
order map function. The when, while, and once sequence operators are closely
related to Haskell’s filter, takewhile and dropwhile functions, respectively.
The thread sequence provides the functionality of foldl. However, due to the
general way sequences can be composed to allow mapping over any number and
any kind of sequences, in combination with folding, filtering, taking and drop-
ping. We also benefit from Prolog’s relational notation to allow any, and any



number, of those sequences to be outputs. Also, since a single step of itera-
tion is taken as the primitive building block of sequence quantification, rather
than traversing a whole list, sophisticated deforestation transformations are not
necessary to produce good code; a simpler local optimization is sufficient.

Note also that while Prolog does not provide any lazy evaluation, since se-
quences are defined to execute sequence_next each time the next element of
the sequence is needed, sequences behave like a crude sort of lazy evaluation,
computing the next element only on demand.

Of course, looping constructs have a much longer history in the imperative
programming literature than in logic or functional programming. The oldest gen-
eralized approach to defining looping constructs we are aware of was proposed
by Liskov and Guttag [10] in the context of the CLU language. They distinguish
three kinds of abstractions: procedural abstraction, data abstraction, and iter-
ation abstraction. Iterators in CLU are rather similar to our sequence concept,
except that they are procedural, while sequences are declarative. One impor-
tant difference is that iterators are defined by procedures that loop, yielding
sequences elements as they are found. Thus using iterators appears to be a form
of coroutining. This makes defining iterators easier than defining sequences, since
iterators can use local data to store state, while implementors of sequences must
store state explicitly. Iterators can be defined in terms of other iterators, much
as we allow sequences to be defined in terms of other sequences.

More recently, iterators have gained prominence in object oriented program-
ming, particularly due to their appearance in the C++ Standard Template Li-
brary.[15] C++ iterators are more like sequences than CLU’s iterators, as they
are not defined by a loop yielding values, but rather by a class with methods
to get the “current” value and advance to the next value. Sequences are similar,
except that their primitive operations are checking for emptiness and getting the
next element and remainder sequence. Since C++ has all the facilities of an im-
perative language, and since iterators are used by explicitly asking for the next
value, it does not need to define iterators in terms of other iterators. However,
that is possible, should it be desired.
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